Aerodynamic design optimization of nacelle/pylon position on an aircraft |
| |
Authors: | Li Jing Gao Zhenghong Huang Jiangtao Zhao Ke |
| |
Affiliation: | National Key Laboratory of Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China |
| |
Abstract: | The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon geometry. The multi-block structured grid deformation technique is established by Delaunay graph mapping method. The optimization objects of aerodynamic characteristics are evaluated by solving Navier–Stokes equations on the basis of multi-block structured grid. The advanced particle swarm optimization (PSO) is utilized as search algorithm, which combines the Kriging model as surrogate model during optimization. The optimization system is used for optimizing the nacelle location of DLR-F6 wing-body-pylon-nacelle. The results indicate that the aerodynamic interference between the parts is significantly reduced. The optimization design system established in this paper has extensive applications and engineering value. |
| |
Keywords: | Delaunay graph mapping Free form deformation (FFD) Kriging model Navier-Stokes equations Particle swarm optimization (PSO) Space-shape |
本文献已被 CNKI 万方数据 ScienceDirect 等数据库收录! |