首页 | 本学科首页   官方微博 | 高级检索  
     

适用于全包线的航空发动机BP网络模型的动态辨识
引用本文:徐亮,黄金泉. 适用于全包线的航空发动机BP网络模型的动态辨识[J]. 南京航空航天大学学报, 2001, 33(4): 334-337
作者姓名:徐亮  黄金泉
作者单位:南京航空航天大学能源与动力学院;南京航空航天大学能源与动力学院
基金项目:航空科学基金 (编号 :99C5 2 0 7)资助项目
摘    要:为克服传统的发动机动态模糊辨识中存在的辨识精度低,辨识模型应用范围窄等不足,把对非线性系统具有高度逼近能力的神经网络应用于航空发动机动态特性的辨识,从而为发动机动态辨识开辟更为广阔的道路,采用均方差归一法的处理方法和BP算法的改进算法-输出端动量BP地,以某型发动机在飞行包线内某一飞行条件下的数据作为学习样本,辨识了发同的神经网络模型,在全包线范围内对该模型进行检验,结果表明,所得的发动机动态模型在全包线内都有很高的逼近精度,而且对噪声有很强的抑制能力。

关 键 词:神经网络  航空发动机  系统辨识  均方差归一法  动量BP算法
文章编号:1005-2615(2001)04-0334-04
修稿时间:2000-10-23

Dynamic Identification with Neural Networks for Aircraft Engines in the Full Envelope
Xu Liang Huang Jinquan College of Energy and Power Engineering,Nanjing University of Aeronautics & Astronautics Nanjing ,P.R.China. Dynamic Identification with Neural Networks for Aircraft Engines in the Full Envelope[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2001, 33(4): 334-337
Authors:Xu Liang Huang Jinquan College of Energy  Power Engineering  Nanjing University of Aeronautics & Astronautics Nanjing   P.R.China
Affiliation:Xu Liang Huang Jinquan College of Energy and Power Engineering,Nanjing University of Aeronautics & Astronautics Nanjing 210016,P.R.China
Abstract:To overcome the shortages of traditionally dynamic identification for aircraft engines, a dynamic identification method with neural network is introduced. The neural networks are trained by improved back-propagation algorithm. Standard variance normalization is used for weight-training data. An improved momentum back-propagation algorithm is developed to train the weights of the neural network in order to provide a better solution. Experimental result shows that the model can trail the aircraft engines with high accuracy in the full envelope. The research proves that neural networks identification is a suitable and promising method for aircraft engine modeling.
Keywords:neural networks  aircraft engines  system identification  standard variance normalization  momentum back-propagation method
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号