风车状态下转子性能及通道内流动分析 |
| |
作者姓名: | 李达 鹿哈男 潘天宇 |
| |
作者单位: | 北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室,北京100191;先进航空发动机协同创新中心,北京100191,北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室,北京100191;先进航空发动机协同创新中心,北京100191,北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室,北京100191;先进航空发动机协同创新中心,北京100191,北京航空航天大学能源与动力工程学院航空发动机气动热力国家级重点实验室,北京100191;先进航空发动机协同创新中心,北京100191;西华大学流体及动力机械教育部重点实验室,成都610039 |
| |
基金项目: | 国家自然科学基金(51636001,51906005,51706008); 航空动力基金(6141B09050375) |
| |
摘 要: | 为探究低展弦比压气机转子在风车状态下由压气机模式向涡轮模式转化过程中性能、内部流场结构以及气动损失的演化过程,提出了一种基于叶片和流体间能量传递的简化数值计算方法,以获得某转速下的风车状态临界流量点。在数值模拟的基础上,重点对比了同一转速线上压气机工况点(小流量工况)、风车临界点和涡轮工况点下叶尖泄漏损失的演化机制,同时探究了叶片通道内流动分离的演化过程。 结果显示,随着转速的增加,转子风车状态临界流量呈现近似线性的变化趋势。而同转速下随流量增大,叶尖泄漏流从吸力面流向压力面,并与压力面上的低能量流体进行掺混,造成了流动堵塞。同时,从压气机模式转向涡轮模式的过程中,叶尖区域的流动分离从吸力面分离转变为压力面分离,随后分离强度和尺寸逐渐增大,造成的气动损失显著增加;而在轮毂区域,流动分离始终保持吸力面分离,其分离尺度沿径向有所发展。
|
关 键 词: | 风车状态 气动性能 流场结构 风车临界点 压气机转子 |
收稿时间: | 2019-12-27 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《航空动力学报》浏览原始摘要信息 |
|
点击此处可从《航空动力学报》下载免费的PDF全文 |
|