首页 | 本学科首页   官方微博 | 高级检索  
     

一种新的蚁群算法及其在飞行器设计中的应用
引用本文:车竞,唐硕,王文正,何开锋. 一种新的蚁群算法及其在飞行器设计中的应用[J]. 航空动力学报, 2009, 24(2): 262-268
作者姓名:车竞  唐硕  王文正  何开锋
作者单位:中国空气动力研究与发展中心,绵阳,621000;西北工业大学航天学院,西安,710072
基金项目:国家自然科学基金,中国博士后科学基金 
摘    要:
尝试将蚁群算法引入飞行器优化设计领域,为此建立了适用于高维、多目标、多约束优化问题的连续空间蚁群算法,并以高超声速飞行器气动布局的多目标优化设计为例进行了验证.优化设计结果与采用遗传算法得到的优化结果进行了对比,指出了蚁群算法的优点.该研究可为蚁群算法应用于复杂、高维的大规模飞行器设计问题提供参考. 

关 键 词:多目标蚁群算法  连续空间  高超声速飞行器  气动布局  优化设计
收稿时间:2008-01-27
修稿时间:2008-08-22

New ant colony algorithm and its application on optimization design of flight vehicle
CHE Jing,TANG Shuo,WANG Wen-zheng and HE Kai-feng. New ant colony algorithm and its application on optimization design of flight vehicle[J]. Journal of Aerospace Power, 2009, 24(2): 262-268
Authors:CHE Jing  TANG Shuo  WANG Wen-zheng  HE Kai-feng
Affiliation:1.China Aerodynamics Research and Development Center, Mianyang 621000, China2.School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Ant colony algorithm(ACA) is a new bionic optimization algorithm developed in recent years.With global and efficient characteristics,it has been applied in discontinuous space successfully.To introduce it to aircraft design field,a high dimensional,multi-objective and multi-restrained ACA for continuous space was built.In an example,it was applied to the multi-objective optimization design of aerodynamic configuration for hypersonic cruise vehicle(HCV).Through comparison with Pareto genetic algorithms(GA),A...
Keywords:Multi-Objective Ant Colony Algorithm (MACA)   Continuous Space   Hypersonic Cruise Vehicle (HCV)   Aero
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号