首页 | 本学科首页   官方微博 | 高级检索  
     

基于NN与SVM的图像质量评价模型
作者姓名:佟雨兵  张其善  常青  祁云平
作者单位:1.北京航空航天大学 电子信息工程学院, 北京 100083
摘    要:为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Ratio)和结构相似度(SSIM,Structure Similarity)作为图像质量的描述参数,给出"野点"的定义,提出"野点预测"并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support Vector Machines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42% ,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中"野点"的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量. 

关 键 词:图像质量   支持向量机   神经网络
文章编号:1001-5965(2006)09-1031-04
收稿时间:2005-11-29
修稿时间:2005-11-29
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号