Robustness evaluation method for unmanned aerial vehicle swarms based on complex network theory |
| |
Affiliation: | 1. School of Reliability and Systems Engineering, Beihang University, Beijing 100083, China;2. Unmanned System Institute, Beihang University, Beijing 100083, China;3. Key Laboratory of Advanced Technology of Intelligent Unmanned Flight System of Ministry of Industry and Information Technology, Beijing 100083, China |
| |
Abstract: | Unmanned Aerial Vehicle (UAV) swarms have been foreseen to play an important role in military applications in the future, wherein they will be frequently subjected to different disturbances and destructions such as attacks and equipment faults. Therefore, a sophisticated robustness evaluation mechanism is of considerable importance for the reliable functioning of the UAV swarms. However, their complex characteristics and irregular dynamic evolution make them extremely challenging and uncertain to evaluate the robustness of such a system. In this paper, a complex network theory-based robustness evaluation method for a UAV swarming system is proposed. This method takes into account the dynamic evolution of UAV swarms, including dynamic reconfiguration and information correlation. The paper analyzes and models the aforementioned dynamic evolution and establishes a comprehensive robustness metric and two evaluation strategies. The robustness evaluation method and algorithms considering dynamic reconfiguration and information correlation are developed. Finally, the validity of the proposed method is verified by conducting a case study analysis. The results can further provide some guidance and reference for the robust design, mission planning and decision-making of UAV swarms. |
| |
Keywords: | Complex networks Dynamic reconfiguration Information correlation Robustness evaluation Unmanned Aerial Vehicles (UAV) |
本文献已被 ScienceDirect 等数据库收录! |
|