首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical exploration on the thermal invasion characteristics of two typical gap-cavity structures subjected to hypersonic airflow
Institution:Key Laboratory of Aerospace Thermophysics of Ministry of Industry and Information Technology, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract:In this paper, numerical investigation of hypersonic gas flow over two typical gap-cavity structures is carried out using all-speed preconditioned density-based solver. Such structures filled with porous seal in the gap are often present at the joint locations of control surfaces of the hypersonic vehicles. Single-domain approach is adopted to integrate the governing equations for both porous and fluid regions. The basic thermal invasion characteristic is first illustrated using the maze gap-cavity structure without sealing. Then, the influence of seal filling depth on the thermal invasion characteristic is investigated for the structure with sealing. Finally, a comparison of thermal invasion characteristics between maze and straight gap-cavity structures is performed to examine the influence of gap bending. Results show that the main source of hot airflow invading into the gap is from the millimeter scale gas layer within the boundary layer. And the invasion characteristic presents approximate stationary behavior. A primary vortex occurs in the gap adjacent to the leeward wall, which is ascribed to the impinging effect between the separate boundary flow and the windward wall. This effect is also the main driving force of thermal invasion. A treatment of filling the seal in certain depth inside the gap can significantly reduce the thermal load of seal and maintain an acceptable level of the invading mass flow rate. Additionally, it is found that the gap bending exerts a limited block effect on the thermal invasion without sealing, and this effect can be ignored with sealing. These results can provide a reference for optimizing the seal gap-cavity structure configuration.
Keywords:Gap-cavity structure  Heat transfer  Hypersonic flow  Porous material  Thermal invasion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号