首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Docking control for probe-drogue refueling: An additive-state-decomposition-based output feedback iterative learning control method
Institution:1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China;2. Department of Aeronautical and Automotive Engineering, Loughborough University, Leicestershire LE11 3TU, United Kingdom
Abstract:Designing a controller for the docking maneuver in Probe-Drogue Refueling (PDR) is an important but challenging task, due to the complex system model and the high precision requirement. In order to overcome the disadvantage of only feedback control, a feedforward control scheme known as Iterative Learning Control (ILC) is adopted in this paper. First, Additive State Decomposition (ASD) is used to address the tight coupling of input saturation, nonlinearity and the property of NonMinimum Phase (NMP) by separating these features into two subsystems (a primary system and a secondary system). After system decomposition, an adjoint-type ILC is applied to the Linear Time-Invariant (LTI) primary system with NMP to achieve entire output trajectory tracking, whereas state feedback is used to stabilize the secondary system with input saturation. The two controllers designed for the two subsystems can be combined to achieve the original control goal of the PDR system. Furthermore, to compensate for the receiver-independent uncertainties, a correction action is proposed by using the terminal docking error, which can lead to a smaller docking error at the docking moment. Simulation tests have been carried out to demonstrate the performance of the proposed control method, which has some advantages over the traditional derivative-type ILC and adjoint-type ILC in the docking control of PDR.
Keywords:Additive state decomposition  Adjoint operator  Docking control  Iterative learning control  Probe-drogue refueling  Stable inversion
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号