首页 | 本学科首页   官方微博 | 高级检索  
     

基于弹性小波神经网络的故障诊断研究
引用本文:徐建泉,梁青阳. 基于弹性小波神经网络的故障诊断研究[J]. 航空计测技术, 2009, 29(4): 5-7,11
作者姓名:徐建泉  梁青阳
作者单位:空军航空大学,吉林,长春,130022 
摘    要:
航空电源系统是机上设备的重要组成部分,任意一个环节出现故障,将会影响整个飞机系统的正常安全运行。针对神经网络收敛速度慢,易陷入局部最小的缺点,将小波神经网络结合弹性BP算法应用到电源系统故障诊断中。训练过程及仿真结果表明:小波神经网络故障诊断算法收敛时间方面表现更优,具有较高故障诊断率。

关 键 词:小波神经网络  航空电源系统  故障诊断  弹性BP算法

Research on Fault Diagnosis Based on Resilient Wavelet Neural Network
XU Jian-quan,LIANG Qing-yang. Research on Fault Diagnosis Based on Resilient Wavelet Neural Network[J]. Aviation Metrology & Measurement Technology, 2009, 29(4): 5-7,11
Authors:XU Jian-quan  LIANG Qing-yang
Affiliation:(Aviation University of Airforce, Changchun 130022, China)
Abstract:
The aircraft electric power source system is an important part of the on board equipments, which will affect the normal and secure flight of the airplane. We combine the wavelet neural network with Rprop algorithm to diagnose the power system to settle the disadvantage of the neural network, which are the low convergence rate and easily running into local minimal. The training process and the result of simulation find out that the way we use has a faster convergence and a preferable diagnosis rate.
Keywords:wavelet neural network  aircraft electric power source system  fault diagnosis  resilient backpropagation
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号