首页 | 本学科首页   官方微博 | 高级检索  
     

吴方法在平面并联机构位置正解中的应用
引用本文:韩林. 吴方法在平面并联机构位置正解中的应用[J]. 北京航空航天大学学报, 1998, 24(1): 116-119
作者姓名:韩林
作者单位:1. 北京航空航天大学 机电工程系;
2. 北京邮电大学 机电工程系
摘    要:
采用吴方法对平面并联机构位置正解问题进行了研究.吴方法是一种求解非线性方程组的数学机械化方法,采用这种方法任何非线性方程组都可以在有限步内得到解决.在给出了吴方法基本原理的基础上,对本问题进行了求解,并将原始方程组转化成为一个三角化的方程组.其中单变量方程的次数为6次,说明平面并联机构可以有6个不同的位姿.最后用数值实例进行了验证,给出了计算结果.吴方法在这一问题中的应用,为求解其它机构学难题提供了新途径.

关 键 词:机构运动分析  平面机构  非线性方程
收稿时间:1996-12-20

Wus Method for Forward Displacement Analysis of the Planar Parallel Mechanisms
Han Lin,Zhang Yu,Liang Chonggao. Wus Method for Forward Displacement Analysis of the Planar Parallel Mechanisms[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 116-119
Authors:Han Lin  Zhang Yu  Liang Chonggao
Affiliation:1. Beijing University of Aeronautics and Astronautics,Dept.of Mechanical and Electrical Engineering;
2. Beijing University of Posts and Telecommunications,Dept. of Mechanical and Electronic Engineering
Abstract:
The forward displacement analysis of the planar parallel mechanisms is studied by using Wu's method.Wu's method is a mechanical mathematics method for solving nonlinear equations.It can solve any nonlinear equations in limited steps.On the base of introducing theory of Wu's method,the problem is solved.The original equations of the problem is changed into triangulated equations in which a single unknown polynomial equation has 6th degree.The result shows that the planar parallel mechanism can have 6 different positions and orientations.In the end,a numerical example is studied.All the solutions for the example are listed.The presented method provides a new way for solving the other difficult mechanism problems.
Keywords:kinematic analysis of mechanisms  plane mechanisms  non linear equations  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号