基于路面分割的高精度地图创建优化方法研究 |
| |
作者姓名: | 钱宇晗 杨明 徐汉卿 王春香 贺越生 梁熠 |
| |
作者单位: | 上海交通大学机器人研究所,上海,200240;上海交通大学自动化系,上海200240;系统控制与信息处理教育部重点实验室,上海200240;军委装备发展部某中心,北京,100034 |
| |
基金项目: | 国家自然科学基金中国汽车产业创新发展基金 (U1764264/61873165);上海汽车工业科技发展基金会 (1733/1807) |
| |
摘 要: | 高精度地图主要利用已采集图像的地面信息生成,但是在真实环境中图像的地面信息容易受动态障碍物遮挡,同时GPS难免会有抖动误差,导致地图拼接效果并不理想。针对上述问题提出了一种基于路面分割的动态障碍物去除与图像配准方法。使用深度学习对全景图像进行语义分割并提取路面信息,在去除动态障碍物干扰后,利用路面特征进行图像配准。融合GPS与里程计信息进行定位优化,利用多帧图像叠加填补空缺形成地图。最终,实验验证了该方法在去除动态障碍物的同时也提高了地图的精度。
|
关 键 词: | 高精细地图 路面分割 动态障碍物去除 图像配准 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《导航定位与授时》浏览原始摘要信息 |
|
点击此处可从《导航定位与授时》下载免费的PDF全文 |
|