首页 | 本学科首页   官方微博 | 高级检索  
     

弹性转动约束复合材料层板的中等大挠度
引用本文:杨加明,孙良新. 弹性转动约束复合材料层板的中等大挠度[J]. 南昌航空工业学院学报, 2002, 16(4): 1-12
作者姓名:杨加明  孙良新
作者单位:[1]南昌航空工业学院土木建筑系,江西南昌330034 [2]南京航空航天大学航空宇航学院,南京210016
基金项目:航空科学基金 ( 0 1B5 2 0 0 7),江西省材料科学与工程研究中心基金 (CL0 2 0 9)资助。
摘    要:本文首先用虚位移原理推导出以位移形式表达的Reddy型高阶剪切变形理论复合材料层板的非线性控制方程及相应的边界条件。选定的5个位移函数均满足弹性转动约束边界条件,用Galerkin方法把无量纲化之后的控制方程转化为一组非线性代数方程组,用线性化的方法和可调节参数的修正迭代法求解这组方程。最后求出了不同复合材料的挠度和弯矩值。

关 键 词:弹性转动约束 复合材料层板 高阶剪切变形理论 几何非线性
文章编号:1001-4926(2002)04-0001-12

Moderate large deflection of composite laminated plates with edges elastically restrained against rotation using higher-order shear deformation theory
YANG Jia ming ,SUN Liang xin. Moderate large deflection of composite laminated plates with edges elastically restrained against rotation using higher-order shear deformation theory[J]. Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition), 2002, 16(4): 1-12
Authors:YANG Jia ming   SUN Liang xin
Affiliation:YANG Jia ming 1,SUN Liang xin 2
Abstract:Geometrically nonlinear governing equations and their boundary conditions of composite laminated plates are obtained in the form of displacements by the virtual displacement principle.They are based on the Reddy's higher-order shear deformation theory. All five-displacement functions satisfy the boundary conditions that all edges are elastically restrained against rotation. Galerkin's method is used to transfer dimensionless governing equations to an infinite set of nonlinear algebraic equations solved by parameter-regulated iterative procedurse.Numerical results are presented in a dimensionless graphical form that relate to the performances of symmetric cross-ply laminated plates subjected to the uniformly distributed loads.The influence of various factors on deflection and moment is studied.
Keywords:Elastically restrained against rotation  Composite laminated plates  High-order shear deformation theory  Geometricaly nonlinear
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号