首页 | 本学科首页   官方微博 | 高级检索  
     

数字趋势序列的子序列匹配算法
引用本文:贾素玲,陈当阳. 数字趋势序列的子序列匹配算法[J]. 北京航空航天大学学报, 2007, 33(3): 350-353
作者姓名:贾素玲  陈当阳
作者单位:北京航空航天大学 经济管理学院, 北京 100083
摘    要:
针对时序数据挖掘中传统趋势序列分析的缺点,提出了数字趋势序列、趋势序列展开等概念.根据数字趋势序列的特点,使用片段斜率所对应的弧度值来度量片段的趋势.针对数字趋势序列的子序列匹配问题,设计了DTW(Dynamic Time Warping)快速搜索算法.算法分为3个部分:DTW顺序搜索、约束机制、冗余消除机制.并使用实际的股票数据对算法进行了验证. 

关 键 词:时序数据挖掘   趋势序列   子序列匹配
文章编号:1001-5965(2007)03-0350-04
收稿时间:2006-04-08
修稿时间:2006-04-08

Subsequence matching algorithm between number trend sequences
Jia Suling,Chen Dangyang. Subsequence matching algorithm between number trend sequences[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(3): 350-353
Authors:Jia Suling  Chen Dangyang
Affiliation:School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:
To overcome the demerits of traditional trend sequences' analysis in temporal data mining,two concepts that were number trend sequences and trend sequences unwrapping were put forward.According to features of number trend sequences,radians were used to represent the trends of line segments. DTW-QS(dynamic time warping quick searching) algorithm was designed to solve the problem of subsequence matching between number trend sequences.The algorithm included three parts: DTW sequential searching,the mechanism of restriction and the mechanism of redundancy control,and DTW-QS algorithm was evaluated via experiments.
Keywords:temporal data mining  trend sequence  subsequence matching
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号