首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的毫米波和亚毫米波成像仪的图像增强技术
引用本文:胡伟东,张文龙,安大伟,王璐,陈实,岳芬,LIGTHART Leo P.. 基于深度学习的毫米波和亚毫米波成像仪的图像增强技术[J]. 上海航天, 2018, 0(2): 13-19
作者姓名:胡伟东  张文龙  安大伟  王璐  陈实  岳芬  LIGTHART Leo P.
作者单位:北京理工大学;国家卫星气象中心;代尔夫特理工大学
基金项目:国家自然科学基金重大科研仪器项目(61527805);国家自然基金面上项目(41775030);教育部高等学校创新引智计划项目(B14010)
摘    要:风云四号卫星毫米波和亚毫米波成像仪(MMSI)数据根据采样方式分为过采样和非过采样数据。由于采样方式的影响,非过采样数据在采样过程中会有一定的信息损失。为解决采用简单的线性插值方法做精细化处理时提升精度有限问题,采用基于深度学习的方法增强MMSI亮温图像,设计卷积神经网络重建风云四号卫星MMSI的亮温图像和风云三号卫星微波成像仪亮温图像。实验结果显示:相比传统的双三次插值方法,在风云三号卫星微波成像仪亮温图像样本上峰值信噪比提升了1.13dB,结构相似度提升了0.01。实验结果表明:对于非过采样亮温数据,采用基于深度学习的方法增强图像具有更高的精度,同时可在其他微波探测仪数据中使用,具有很强的普适性。

关 键 词:超分辨率   卷积神经网络   双三次插值   毫米波和亚毫米波成像仪   图像增强   非过采样数据   亮温图像
收稿时间:2017-11-20
修稿时间:2018-02-07

Image Enhancement Technique of Millimeter and Sub-MillimeterSounding/Imager Based on Deep Learning
HU Weidong,ZHANG Wenlong,AN Dawei,WANG Lu,CHEN Shi,YUE Fen and LIGTHART Leo P.. Image Enhancement Technique of Millimeter and Sub-MillimeterSounding/Imager Based on Deep Learning[J]. Aerospace Shanghai, 2018, 0(2): 13-19
Authors:HU Weidong  ZHANG Wenlong  AN Dawei  WANG Lu  CHEN Shi  YUE Fen  LIGTHART Leo P.
Affiliation:Beijing Institute of Technology, Beijing 100081, China,Beijing Institute of Technology, Beijing 100081, China,National Satellite Meteorological Center, Beijing 100142, China,Beijing Institute of Technology, Beijing 100081, China,Beijing Institute of Technology, Beijing 100081, China,Beijing Institute of Technology, Beijing 100081, China and Delft University of Technology, Delft
Abstract:FY-4 millimeter and sub-millimeter sounding/imager (MMSI) data are divided into oversampling and non-oversampling data according to the sampling model. However, non-oversampling data have a certain information loss during the sampling process. The traditional method employs the linear interpolation to perform the fine processing, but the accuracy improvement is limited. In this paper, a method based on deep learning and convolution neural network is used to enhance the brightness temperature images of FY-4 MMSI and FY-3 microwave imager. The experimental results show that the peak signal-to-noise ratio is increased by 1.13 dB and the structure similarity is increased by 0.01 for FY-3 microwave imager, compared with the traditional bicubic interpolation method. The experimental results indicate that the image enhancement based on the deep learning method is more accurate than that based on the bicubic method. It can also be applied to other microwave detector data due to strong universality.
Keywords:super-resolution   convolutional neural network   bicubic interpolation   millimeter and sub-millimeter sounding/imager   image enhancement   non-oversampling data   brightness temperature image
本文献已被 CNKI 等数据库收录!
点击此处可从《上海航天》浏览原始摘要信息
点击此处可从《上海航天》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号