首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度卷积神经网络的遥感影像目标检测
引用本文:孙梓超,谭喜成,洪泽华,董华萍,沙宗尧,周松涛,杨宗亮. 基于深度卷积神经网络的遥感影像目标检测[J]. 上海航天, 2018, 0(5): 18-24
作者姓名:孙梓超  谭喜成  洪泽华  董华萍  沙宗尧  周松涛  杨宗亮
作者单位:武汉大学遥感信息工程学院;上海机电工程研究所;城市空间信息工程北京市重点实验室
基金项目:国家重点研发计划项目(2017YFB0504202);上海航天科技创新基金项目(SAST2016006);湖北省自然科学基金项目(2017CFB433);智能地学信息处理湖北省重点实验室(中国地质大学(武汉))开放基金(KLIGIP-2017A09);空间数据挖掘与信息共享教育部重点实验室(福州大学)开放基金(2016LSDMIS06);城市空间信息工程北京市重点实验室经费资助项目(2017209)
摘    要:
随着遥感影像数据规模的快速扩张,如何高效准确地识别遥感影像中的典型目标成为当前的研究热点。为解决传统遥感影像目标检测方法准确率低的问题,用基于深度卷积神经网络进行遥感影像目标检测,在遥感影像数据集上用基于Faster-RCNN的神经网络模型对VGG16卷积网络进行训练,对输入的遥感影像通过区域推荐网络标注出待检目标的包围框和置信度,实现对遥感影像的目标检测。以飞机和油罐为例,在TensorFlow深度学习框架下实现了数据预处理、网络训练、目标检测等功能,并在当前测试数据集上取得了较高的检测准确率和置信度。该研究成果可应用于遥感影像解译和处理等相关领域。

关 键 词:深度卷积神经网络   遥感影像目标检测   区域卷积神经网络   深度学习   TensorFlow框架
收稿时间:2018-08-01
修稿时间:2018-09-08

Remote Sensing Image Object Detection Based on Deep Convolution Neural Network
SUN Zichao,TAN Xicheng,HONG Zehu,DONG Huaping,SHA Zongyao,ZHOU Songtao and YANG Zongliang. Remote Sensing Image Object Detection Based on Deep Convolution Neural Network[J]. Aerospace Shanghai, 2018, 0(5): 18-24
Authors:SUN Zichao  TAN Xicheng  HONG Zehu  DONG Huaping  SHA Zongyao  ZHOU Songtao  YANG Zongliang
Affiliation:School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China,School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China,Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China,School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China;Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100038, China,School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China,School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China and School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, Hubei, China
Abstract:
With the rapid expansion of remote sensing image data, how to identify typical object efficiently and accurately in remote sensing images has become a hot research area. In order to break through the bottleneck of the accuracy of traditional remote sensing image object detection methods, this paper proposes a deep convolution neural network method to detect remote sensing image objects, and uses the Faster-RCNN neural network model to train VGG16 convolution networks on remote sensing image datasets. The input remote sensing image is marked with the bounding box and confidence level of the object to be inspected through the region proposal network, thereby realizing the target detection of the remote sensing image. Taking aircraft and oil tank as examples, this paper realizes data preprocessing, network training, object detection and other processes under the TensorFlow deep learning framework, and achieves relative high detection accuracy and confidence on the current test dataset. The research results of this paper can apply to remote sensing image interpretation and remote sensing image processing.
Keywords:deep convolution neural network   remote sensing image object detection   region-based convolution neural network   deep learning   TensorFlow framework
本文献已被 CNKI 等数据库收录!
点击此处可从《上海航天》浏览原始摘要信息
点击此处可从《上海航天》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号