首页 | 本学科首页   官方微博 | 高级检索  
     

随机结构孤立特征值的统计特性
引用本文:黄斌,瞿伟廉. 随机结构孤立特征值的统计特性[J]. 航空学报, 2005, 26(1): 40-43
作者姓名:黄斌  瞿伟廉
作者单位:武汉理工大学 土木工程与建筑学院, 湖北 武汉 430070
基金项目:国家自然科学基金(50208016)资助项目
摘    要:研究了随机结构的孤立特征值问题。将材料物理量的随机场扩展为K-L(Karhunen-Loeve)正交展式,采用非正交多项式混沌展式表达孤立特征值,建立了和摄动法类似的一系列确定的递推方程,并通过确定性有限元方法求解了这些递推方程,得到了特征值的均值和方差。在算例中用蒙特卡洛方法验证了本方法的正确性。

关 键 词:随机结构  孤立特征值  K-L正交展式  非正交多项式混沌  摄动法  
文章编号:1000-6893(2005)01-0040-04
收稿时间:2003-12-09
修稿时间:2003-12-09

Statistics of Isolated Eigenvalues of Random Structures
HUANG Bin,QU Wei-lian. Statistics of Isolated Eigenvalues of Random Structures[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(1): 40-43
Authors:HUANG Bin  QU Wei-lian
Affiliation:School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
Abstract:A new random finite element method for solving eigenvalue problems involving material variability is given. The random material properties, such as the modulus of elasticity, are represented by Karhunun-Loeve expansion. Random structural eigenvalues are expressed as nonorthogonal polynomials chaos. With the aid of the finite element method, a set of deterministic recursive equations is set up to deal with eigenvalue problems through nonorthogonal polynomials of the same order. The statistics of eigenvalues is derived. A beam problem and a plate problem are investigated by the new method. The derived second-order statistics of eigenvalues is found in good agreement with those obtained by Monte-Carlo simulation.
Keywords:random structure  isolated eigenvalue  Karhunen-Loeve expansion  nonorthogonal polynomials chaos  perturbation method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号