基于自适应修正曼哈顿距离的室内定位方法 |
| |
作者姓名: | 陈亦奇 周蓉 滕婧 周洪波 栾泉中 |
| |
作者单位: | 华北电力大学控制与计算机工程学院,北京 102206;华北电力大学控制与计算机工程学院,北京 102206;华北电力大学控制与计算机工程学院,北京 102206;华北电力大学控制与计算机工程学院,北京 102206;华北电力大学控制与计算机工程学院,北京 102206 |
| |
基金项目: | 国家自然科学基金(61503137,61871181);中央高校基本科研业务费专项资金(2017MS035) |
| |
摘 要: | 在室内WiFi环境下,针对常见指纹匹配算法所忽略的信号波动问题,提出了一种基于自适应修正曼哈顿距离和AP选择的指纹匹配算法,并结合加权K近邻方法实现定位。首先采用AP选择算法获取部分受干扰程度小和出现频率高的AP,在指纹匹配时仅使用该部分AP的接收信号强度进行计算;在分析WiFi信号传播衰减公式和信号波动的基础上,提出了将自适应修正曼哈顿距离作为指纹匹配的度量距离,使用该距离旨在平滑信号波动对指纹相似度计算的影响;最后采用加权K近邻方法估计测试点的坐标。实验结果表明,在加权K近邻方法的框架下,基于自适应修正曼哈顿距离的定位算法在定位精度上优于基于欧氏距离、曼哈顿距离、余弦距离和Sorensen距离的定位算法。
|
关 键 词: | 室内定位 WiFi指纹 相似度度量 信号波动 曼哈顿距离 |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《导航定位与授时》浏览原始摘要信息 |
|
点击此处可从《导航定位与授时》下载免费的PDF全文 |
|