首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Physical-chemical limits for the stability of biomolecules.
Authors:E W Lang
Institution:Institut fur Biophysik und Physikalische Biochemie, Universitat Regensburg, FRG.
Abstract:Water is an indispensable prerequisite for the existence of life. Only in an aqueous environment can biomolecules take up their native, tertiary structure and organize themselves into higher aggregates like multienzyme complexes or cell-organelles. In most of these processes interactions between biomolecules and water play an important role. The influence of pressure and temperature upon intramolecular interactions of biopolymers and biopolymer-water interactions are discussed. Because of fast hydrolysis biomolecules should be unstable at T > or = 500 K. Hydrostatic pressure leads to an accelerated hydrolysis. The p,T-dependence of hydrophobic interactions suggest an even lower upper boundary around T approximately 400 K. In the model system t-butanol/water compression weakens hydrophobic interactions. However, within the modest pressure range p < or = 120 MPa observed on earth hydrostatic pressure does not seem to limit the stability of biomolecules at temperatures below 400 K severely.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号