首页 | 本学科首页   官方微博 | 高级检索  
     检索      

空间多载荷高精度拼接支撑结构的优化设计
引用本文:裴彦伟,谷松,赵春娟,赵相禹.空间多载荷高精度拼接支撑结构的优化设计[J].航天器环境工程,2022,39(1):76-82.
作者姓名:裴彦伟  谷松  赵春娟  赵相禹
作者单位:1.长光卫星技术有限公司
摘    要:针对遥感卫星在多载荷高精度拼接扩大幅宽时需保证成像质量的要求,考虑多载荷之间的耦合,对支撑结构进行空间布局优化以及结构/热控一体化设计.应用改进的Heaviside密度滤波拓扑优化方法获取最优结构/热控的材料分布形式,结合多目标遗传算法进行详细优化设计,获取支撑结构质量、一阶固有频率和载荷安装面面形精度的Pareto前...

关 键 词:多载荷拼接  支撑结构  热变形  多目标遗传算法  结构稳定性
收稿时间:2021-04-01

Optimized design of support structure for space multi-load and high-precision splicing
PEI Yanwei,GU Song,ZHAO Chunjuan,ZHAO Xiangyu.Optimized design of support structure for space multi-load and high-precision splicing[J].Spacecraft Environment Engineering,2022,39(1):76-82.
Authors:PEI Yanwei  GU Song  ZHAO Chunjuan  ZHAO Xiangyu
Institution:1.Chang Guang Satellite Technology Co. Ltd.2.Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences: Changchun 130033, China3.Graduate School, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:In order to ensure the imaging quality of the multi-load remote-sensing satellite for high-precision splicing with the expanded image width, the spatial layout of the multiple loads is optimized with consideration of the coupling between the multiple loads, and a thermo-structural integration design scheme is proposed. The improved Heaviside density filter topology optimization method is applied to obtain the optimal structure/thermal material distributions, the multi-objective genetic algorithm is used for the detailed optimization design, and the Pareto front solution groups of the mass of the support structure are used to obtain the first-order natural frequency and the RMS of the surface figure. The optimized parameters of the support structure are obtained: the first-order natural frequency is 384.8 Hz; the mass is 9.47 kg; the configuration accuracy of the installation face is 0.004 0 mm. Then, the static load and the thermal deformation analyses are carried out, together with the vibration and structural test validation. It is shown that the support structure enjoys a good balance between light weight and structural & thermal stability in that the pointing accuracy of the star sensor is better than 9″, and the angle change between the optical axes of dual cameras is acceptable. Therefore, the support structure can meet the requirements of the remote sensing satellite for high-quality imaging.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《航天器环境工程》浏览原始摘要信息
点击此处可从《航天器环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号