Abstract: | For most liquid-fueled combustion systems the behavior of the fuel as it is introduced to the combustion zone, often by spray injection, will have a significant impact on combustion. The subsequent combustion may be affected to a considerable degree by the initial spread of the liquid, break-up of larger fuel sheets and droplets into droplets of various sizes, droplet vaporization, and diffusion of gaseous fuel. Among the many factors which affect spray break-up and droplet vaporization are the environmental conditions into which the spray is introduced. For both diesel engines and rockets the environment pressure and temperature may be above the critical pressure and temperature of the injected fuel. In a compression-ignition internal combustion engine, the environment consists primarily of air, at pressures from 20 to 100 atmospheres and temperatures ranging from 900 to 1500 K. Even higher pressures are encountered in turbocharged diesels. A typical diesel reference fuel, dodecane, has a thermodynamic critical pressure of about 17 atmospheres, and a critical temperature of 600 K. Fuel is injected into a diesel engine environment in which ambient pressures exceed the critical pressure. While droplet temperatures are subcritical at first, they may rise to the critical temperature or higher.This paper will survey current understanding of supercritical pressure droplet vaporization. Specifically, the topics covered will include: liquid phase behavior; vapor phase behavior; thermodynamic and transport properties; droplet distribution and break-up; micro-explosions; and effects of microgravity. |