首页 | 本学科首页   官方微博 | 高级检索  
     


HCN formation under electron impact: experimental studies and application to Neptune's atmosphere.
Authors:M C Gazeau  H Cottin  L Guez  P Bruston  F Raulin
Affiliation:LISA, CNRS and Universites Paris, France.
Abstract:
Laboratory experiments simulating organic synthesis in Neptune's atmosphere have been performed. We have submitted to a spark discharge gaseous mixtures containing 9 mbar of molecular nitrogen and 3 mbar of methane (the p(N2)/p(CH4) ratio is compatible with upper limits in Neptune's stratosphere) with varying quantities of molecular hydrogen. The spark discharge is used to model the energetic electrons produced by the impact of cosmic rays on the high atmosphere of Neptune. HCN is synthesized in the described experimental conditions, even with a low mixing ratio of molecular nitrogen. Studying the variation of HCN production with the initial composition of the gas mixture and extrapolating to high mixing ratio of molecular hydrogen allows to estimate HCN production in Neptune's atmosphere. The computed HCN production flux is 7x10(7) m-2 s-1, which is two orders of magnitude lower than the value predicted by chemical models for an internal source of N atoms. The major uncertainty in our extrapolation is the energetic distribution of electrons, implicitly assumed comparable in the discharge and in Neptune's atmosphere. We note that this distribution is also a source of uncertainty in chemical models. The chemical mechanism responsible for the local formation of HCN in the stratosphere probably occurs in the reactor too. We propose a simple characterization of the spark discharge. We thus link the molecular nitrogen dissociation cross section by electron impact to the measured parameters of the experiments (current, voltage, initial partial pressures) and to the resulting HCN partial pressures. However, other laboratory experiments with larger hydrogen pressures, requiring a more powerful electric source, have to be performed to yield a value of the cross section.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号