首页 | 本学科首页   官方微博 | 高级检索  
     

复合材料格栅结构优化设计中的计算智能技术
引用本文:荣晓敏,徐元铭,吴德财. 复合材料格栅结构优化设计中的计算智能技术[J]. 北京航空航天大学学报, 2006, 32(8): 926-929
作者姓名:荣晓敏  徐元铭  吴德财
作者单位:北京航空航天大学 航空科学与工程学院, 北京 100083
基金项目:国家自然科学基金,航空基础科学基金
摘    要:
针对复合材料格栅结构优化设计多变量、多约束、连续和离散混合变量、高度非线性的难点,提出了用进化神经网络来实现结构设计参数(输入)与结构响应参数(输出)的全局非线性映射关系,以此来代替优化过程中的有限元计算,以提高优化效率.以遗传算法为优化求解器,神经网络屈曲稳定性响应面为主要约束,对复合材料格栅加筋结构进行优化.结果表明,在相同样本数的情况下,进化神经网络可获得比BP网络更高精度的映射模型,具有很强的泛化能力.该方法可以为解决大型复合材料结构优化问题提供一条高效途径. 

关 键 词:计算智能   进化神经网络   遗传算法   复合材料   格栅加筋板   结构优化
文章编号:1001-5965(2006)08-0926-04
收稿时间:2005-10-17
修稿时间:2005-10-17

Computational intelligence technology for optimal design of grid-stiffened composite structure
Rong Xiaomin,Xu Yuanming,Wu Decai. Computational intelligence technology for optimal design of grid-stiffened composite structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8): 926-929
Authors:Rong Xiaomin  Xu Yuanming  Wu Decai
Affiliation:School of Aeronautic Science and Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:
To overcome the difficulties of optimal design for grid-stiffened composite structures,such as multi-variables,multi-constraints,mixed discretecontinuous design variables,highly nonlinear,etc,the application of computational intelligence(CI),namely evolutionary neural networks(ENN) was considered for realizing the global nonlinear mapping between structural design parameters and structural responses.They were aimed to replace the finite element computation during an actual optimization process so as to raise the efficiency of optimization.By using genetic(algorithm(GA)) as the optimization procedure and the structural buckling constraint as the neural network response surface,the optimal design of grid-stiffened composite panel under axial compressive loads was studied.The results indicate that with very limited FEM sample space,the accuracy of the evolutionary buckling neural network is much higher than that of traditional BP neural network.The resulted ENN-GA algorithm proves that it can offer an efficient approach to the optimization design of large complex composite structures.
Keywords:computational intelligence  evolutionary neural networks  genetic algorithm  composites  grid-stiffened panel  structural optimization
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号