首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的太阳黑子Wilson山磁类型识别方法
引用本文:李书馨, 赵学斌, 陈君, 李伟夫, 陈洪, 陈艳红, 崔延美, 袁天娇. 基于深度学习的太阳黑子Wilson山磁类型识别方法[J]. 空间科学学报, 2022, 42(3): 333-339. doi: 10.11728/cjss2022.03.210107004
作者姓名:李书馨  赵学斌  陈君  李伟夫  陈洪  陈艳红  崔延美  袁天娇
作者单位:1.中国科学院国家空间科学中心 北京 100190;;2.中国科学院大学 北京 100049;;3.中国科学院空间环境态势感知技术重点实验室 北京 100190;;4.华中农业大学理学院 武汉 430070
基金项目:中国科学院战略性先导科技专项资助(XDA17010302)
摘    要:太阳黑子是太阳光球层中带有较强磁场的区域,通常是太阳爆发活动的源区。Wilson山磁分类是当前最为主流的太阳黑子分类方法之一,对研究太阳爆发有重要意义。利用2010-2017年间SDO/HMI成像仪观测到的720s_SHARP磁图和白光图数据,研究使用深度学习对太阳黑子群Wilson山磁分类的方法。实验结果表明,Xception网络在识别太阳黑子Wilson山磁类型上能取得最优的效果,其中对α类型黑子的F1得分为96.50%,β类为93.20%,其他类型的黑子为84.65%。

关 键 词:太阳黑子   Xception网络   深度学习   Wilson山磁分类
收稿时间:2021-01-07
修稿时间:2021-09-03

Recognition Method for Mount Wilson Magnetic Type of Sunspots Based on Deep Learning
LI Shuxin, ZHAO Xuebin, CHEN Jun, LI Weifu, CHEN Hong, CHEN Yanhong, CUI Yanmei, YUAN Tianjiao. Recognition Method for Mount Wilson Magnetic Type of Sunspots Based on Deep Learning (in Chinese). Chinese Journal of Space Science, 2022, 42(3): 333-339. DOI: 10.11728/cjss2022.03.210107004
Authors:LI Shuxin  ZHAO Xuebin  CHEN Jun  LI Weifu  CHEN Hong  CHEN Yanhong  CUI Yanmei  YUAN Tianjiao
Affiliation:1. National Space Science Center, Chinese Academy of Sciences, Beijing 100190;;2. University of Chinese Academy of Sciences, Beijing 100049;;3. Key Laboratory of Science and Technology on Environment Space Situation Awareness, Chinese Academy of Sciences, Beijing 100190;;4. College of Science, Huazhong Agricultural University, Wuhan 430070
Abstract:Sunspots are the regions with stronger magnetic field in the solar photosphere and most of solar eruptions occur in complex sunspot groups. Mount Wilson magnetic classification is one of the most popular sunspots classification methods, which is of great significance to the study of solar eruptions. In recent years, with the rapid development of China’s space industry, space physics research has entered the era of big data. Deep learning methods for processing space science data are springing up. In this study, based on the SDO/HMI SHARP continuum and magnetogram data during 2010-2017, we propose to apply deep learning for the image recognition of Mount Wilson magnetic type of sunspots. The results show that Xception has a productive performance in the identification of the sunspots magnetic types in solar active regions. The F1 score of sunspots group of α exceeds 96%, that of β is more than 93%, and that of other types is more than 84%. 
Keywords:Sunspots  Xception network  Deep learning  Mount Wilson magnetic classification
点击此处可从《空间科学学报》浏览原始摘要信息
点击此处可从《空间科学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号