首页 | 本学科首页   官方微博 | 高级检索  
     

小波分析和人工神经网络在金属超声无损检测缺陷分类中的应用
引用本文:卢超 张维 等. 小波分析和人工神经网络在金属超声无损检测缺陷分类中的应用[J]. 南昌航空工业学院学报, 2001, 15(3): 51-54
作者姓名:卢超 张维 等
作者单位:南昌航空工业学院测控工程系,;南昌航空工业学院测控工程系,;南昌航空工业学院测控工程系,;南昌航空工业学院测控工程系,
摘    要:基于金属超声检测中的缺陷脉冲回波为非稳态信号的特点,对高温合金材料超声检测信号的小波变换进行了特征分析,提取了各级小波分解信号的能量分布特征,最后将这些特征输入人工神经网络进行训练和分类,实验表明,这种方法具有良好效果。

关 键 词:超声检测  小波分析  缺陷分类  人工神经网络
文章编号:1001-4926(2001)03-0051-04
修稿时间:2001-09-13

Application of Wavelet Analysis and Artificial Neutral Networks to Flaw Classification in Ultrasonic Non-destructive Testing
Lu Chao Zhang Wei Peng Yingqiu Li Jian. Application of Wavelet Analysis and Artificial Neutral Networks to Flaw Classification in Ultrasonic Non-destructive Testing[J]. Journal of Nanchang Institute of Aeronautical Technology(Natural Science Edition), 2001, 15(3): 51-54
Authors:Lu Chao Zhang Wei Peng Yingqiu Li Jian
Abstract:As the flaw pulse echo signals were non-stationary in ultrasonic testing,wavelet transform was used for analyzing feature of the flaw signals in ultrasonic testing of high temperature alloy.Features based on power distribution of the decomposed signals were extracted.Finally,a artificial neutral networks classifier was used for the features.Experimental results show that the method is effective..
Keywords:Ultrasonic testing  Wavelet transform  Flaw classification  Artificial neutral networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号