摘 要: | 提出一种基于极限学习算法的离散过程神经网络模型,用于解决液体火箭发动机状态预测这一难题。首先,在历史数据的基础上建立离散过程神经网络(DPNN)预测模型;然后,根据在线更新的数据样本,采用递推极限学习(EL)算法对双并联前馈离散过程神经网络(DPFDPNN)隐层到输出层的权值进行更新,并应用权值更新后的过程神经网络对发动机状态进行预测;最后,以液体火箭发动机状态预测中氢涡轮泵扬程预测为例,分别采用有权值更新和无权值更新两种预测模型进行了试验。结果表明,通过更新过程神经网络权值可以使模型具有更高的预测精度和更好的适应能力,该方法能够为液体火箭发动机状态预测提供一种有效的解决途径。
|