首页 | 本学科首页   官方微博 | 高级检索  
     

基于不确定传感器状态的机载系统多层故障诊断方法
引用本文:石健,王少萍,罗雪松. 基于不确定传感器状态的机载系统多层故障诊断方法[J]. 航空学报, 2021, 42(6): 624376-624376. DOI: 10.7527/S1000-6893.2020.24376
作者姓名:石健  王少萍  罗雪松
作者单位:北京航空航天大学 自动化科学与电气工程学院,北京 100191;北京航空航天大学 宁波创新研究院,宁波 315800;北京航空航天大学 自动化科学与电气工程学院,北京 100191
基金项目:国家自然科学基金(51875014,51875015);专项基金(2017-V-0011)
摘    要:准确的机载系统故障诊断是保证飞机安全飞行和实现经济效益最大化的重要途径。然而传感器受到内外部环境条件的影响而不可避免的存在检测状态的不确定性,因此基于单个传感器或局部区域传感器综合检测结果的方法难以完全保证故障诊断的有效性和正确性。针对飞机机载系统的结构和工作原理,充分利用系统中不同层级、不同区域传感器检测特征之间的关联关系,考虑单个传感器本身存在的不确定性,构建了传感器信息前向融合与反向校验相结合的分层诊断决策方法,实现了对系统状态和传感器状态的双重估计与更新,克服了单一传感器故障对系统诊断推理准确度的影响。该方法较传统故障诊断模型,不再依赖某一个或某一类传感器信息的绝对可靠,在实现系统级的准确故障诊断同时,还能判断具体某一传感器本身是否发生虚拟警。在飞机液压系统故障诊断案例中,新方法成功将系统故障诊断的虚警率降低了96%,传感器的不确定度降低了84%。

关 键 词:传感器虚警  传感器信息融合  机载系统  交叉校验  贝叶斯网络
收稿时间:2020-06-08
修稿时间:2020-09-04

Multi-layer fault diagnosis of airborne system based on sensor uncertainty
SHI Jian,WANG Shaoping,LUO Xuesong. Multi-layer fault diagnosis of airborne system based on sensor uncertainty[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624376-624376. DOI: 10.7527/S1000-6893.2020.24376
Authors:SHI Jian  WANG Shaoping  LUO Xuesong
Affiliation:1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China;2. Ningbo Institute of Technology, Beihang University, Ningbo 315800, China
Abstract:Accurate fault diagnosis of airborne system is an important way to ensure safe aircraft flight and maximize economic benefits. However, due to impacts of internal and external environmental conditions, the sensor has detection uncertainties, and is thus difficult to guarantee the validity and correctness of fault diagnosis based on detection of single sensor or of local sensors. Based on the structure and working principle of the airborne system, this paper proposes a hierarchical diagnosis decision-making method based on a combination of evidence forward fusion and reverse verification. The correlation between the detection features of sensors in different levels and different regions in the airborne system, and the uncertainty of a single sensor itself is considered. Estimation of both of the system state and sensor state can be realized, and the influence of single sensor fault on the accuracy of system diagnosis can be overcome. Compared with the traditional fault diagnosis model, the proposed method no longer depends on the absolute reliability of one or a kind of sensor information. At the same time, it can realize the accurate fault diagnosis at the system level, and can also judge whether a specific sensor itself has virtual alarm. In the case of fault diagnosis of aircraft hydraulic system, it can be seen that with the method proposed, the false alarm rate of system fault diagnosis is successfully reduced by 96% and the sensor uncertainty by 84%.
Keywords:sensor false alarm  evidence fusion  airborne system  cross check between layers  Bayesian network  
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号