首页 | 本学科首页   官方微博 | 高级检索  
     

SMA鼓包迟滞建模与控制策略
引用本文:陈旭亮,张琛,季宏丽,裘进浩. SMA鼓包迟滞建模与控制策略[J]. 航空学报, 2021, 42(9): 224652-224652. DOI: 10.7527/S1000-6893.2020.24652
作者姓名:陈旭亮  张琛  季宏丽  裘进浩
作者单位:南京航空航天大学 航空学院 机械结构力学及控制国家重点实验室,南京 210016
基金项目:国家自然科学基金(11532006&51775267);江苏省自然科学基金(BK20181286);装备预研基金(61402100103);江苏高校优势学科建设工程资助项目
摘    要:
激波控制鼓包SCB是一种减小激波阻力的流动控制技术。为了解决固定挠度鼓包工作范围较窄的问题,提出了一种具有双向记忆效应的形状记忆合金SMA鼓包,通过控制SMA鼓包的温度来改变其挠度。SMA鼓包最大可回复位移为6.1 mm,为鼓包变形区域的2.65%。针对迟滞现象对鼓包挠度控制的影响,基于(Krasnosel'skii-Pokrovskii,KP)模型对SMA鼓包的温度/挠度迟滞特性进行了建模研究。采用粒子群算法来辨识模型参数,辨识得到的迟滞模型最大误差为0.107 mm。设计了2种基于KP模型的PID控制方案,一种为无迟滞补偿的单目标PID控制,一种为迟滞逆模型前馈补偿的双目标PID控制。仿真与实验结果表明,迟滞逆模型前馈补偿的双目标PID控制时域性能优于无迟滞补偿的单目标PID控制。

关 键 词:形状记忆合金  迟滞建模  Krasnosel’skii-Pokrovskii(KP)模型  激波控制鼓包  PID控制
收稿时间:2020-08-18
修稿时间:2020-11-11

SMA bump hysteresis modeling and control strategy
CHEN Xuliang,ZHANG Chen,JI Hongli,QIU Jinhao. SMA bump hysteresis modeling and control strategy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224652-224652. DOI: 10.7527/S1000-6893.2020.24652
Authors:CHEN Xuliang  ZHANG Chen  JI Hongli  QIU Jinhao
Affiliation:State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:
Shock Control Bump (SCB) is a flow control method for shock drag reduction. To solve the problem of the narrow working range of the fixed deflection bump, we propose a Shape Memory Alloy (SMA) bump with two-way memory effect to change deflection by controlling the temperature. The maximum recoverable displacement of the SMA bump is 6.1 mm, which is 2.65% of the deformation area of the bump. To reduce the influence of the hysteresis when controlling the deflection, we use the Krasnosel'skii-Pokrovskii (KP) model to model the temperature/deflection hysteresis of the SMA bump. The particle swarm algorithm is adopted to identify the parameters of the hysteresis model. The maximum error of the identified hysteresis model is 0.107 mm. Two PID control schemes based on the KP model are designed, one being single-target PID control without hysteresis compensation, and the other being dual-target PID control with the hysteresis inverse model feedforward compensation. Simulation and experimental results show that the time-domain performance of the dual-target PID control with the hysteresis inverse model feedforward compensation is better than the single-target PID control without hysteresis compensation.
Keywords:shape memory alloy  hysteresis modeling  Krasnosel'skii-Pokrovskii (KP) model  shock control bump  PID control  
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号