湍流数据同化技术及应用 |
| |
作者姓名: | 何创新 邓志文 刘应征 |
| |
作者单位: | 上海交通大学机械与动力工程学院动力机械与工程教育部重点实验室,上海 200240;上海交通大学燃气轮机研究院,上海 200240 |
| |
基金项目: | 国家自然科学基金(12002208,11725209) |
| |
摘 要: | 近年来数据同化(DA)被引入湍流动力学研究中,通过融合实验测量和数值计算,提高了实验测量的精度和广度,改善了数值模拟的预测性能。实验观测、预测模型和同化算法是数据同化的三要素,湍流研究中的实验观测包括热线风速仪、粒子图像测速法(PIV)、压力传感器等局部测量数据,预测模型主要指流动控制方程及湍流封闭方程,而同化算法包括贝叶斯推断、集合卡尔曼滤波(EnKF)、伴随等。稳态数据同化一般结合雷诺平均Navier-Stokes (RANS)模型方程,从重新标定模型常数、修正涡黏模型方程形式误差、修正雷诺应力项等方面着手。非稳态的数据同化一般包括四维变分(4DVar)等时间连续的数据同化方式以及顺序数据同化。4DVar通过时间正向和逆向积分迭代,存储量和计算量都非常大。顺序数据同化不需要时间逆向积分,可以在若干时刻对实验观测进行间断地植入,正向求解整个系统。另外,随着人工智能的飞速发展,湍流数据同化研究也向智能化迈进。对于纯数据驱动的湍流机器学习,其缺乏物理本质的约束,而基于物理信息的机器学习在物理本质上与数据同化是一致的。
|
关 键 词: | 湍流 数据同化 实验测量 数值计算 机器学习 |
收稿时间: | 2020-09-02 |
修稿时间: | 2020-10-08 |
本文献已被 万方数据 等数据库收录! |
| 点击此处可从《航空学报》浏览原始摘要信息 |
|
点击此处可从《航空学报》下载全文 |
|