首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进Q学习的IMA系统重构蓝图生成方法
引用本文:罗庆,张涛,单鹏,张文涛,刘子豪. 基于改进Q学习的IMA系统重构蓝图生成方法[J]. 航空学报, 2021, 42(8): 525792-525792. DOI: 10.7527/S1000-6893.2021.25792
作者姓名:罗庆  张涛  单鹏  张文涛  刘子豪
作者单位:1. 航空工业沈阳飞机设计研究所, 沈阳 110035;2. 南京航空航天大学 航天学院, 南京 210016;3. 西北工业大学 软件学院, 西安 710072;4. 航空工业西安航空计算技术研究所, 西安 710065
基金项目:航空科学基金(2015ZD53055,20185853038,201907053004)
摘    要:重构蓝图定义了故障状态下系统软硬件资源的重新配置方案,是实现综合模块化航空电子系统重构容错的关键。提出了一种基于改进Q学习的重构蓝图生成方法,综合考虑负载均衡、重构影响、重构时间、重构降级等多优化目标,并应用模拟退火框架改进探索策略,提高了传统Q学习算法的收敛性能。实验结果表明,与模拟退火算法、差分进化算法、传统Q学习算法相比,本文提出的改进Q学习算法效率更高,所生成重构蓝图质量更高。

关 键 词:强化学习  Q学习  模拟退火算法  综合模块化航空电子系统  多目标优化  重构  
收稿时间:2021-04-15
修稿时间:2021-05-08

Generating reconfiguration blueprints for IMA systems based on improved Q-learning
LUO Qing,ZHANG Tao,SHAN Peng,ZHANG Wentao,LIU Zihao. Generating reconfiguration blueprints for IMA systems based on improved Q-learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525792-525792. DOI: 10.7527/S1000-6893.2021.25792
Authors:LUO Qing  ZHANG Tao  SHAN Peng  ZHANG Wentao  LIU Zihao
Affiliation:1. AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China;2. School of Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;3. School of Software, Northwestern Polytechnical University, Xi'an 710072, China;4. AVIC Xi'an Institute of Aeronautical Computing Technology, Xi'an 710065, China
Abstract:Reconfiguration blueprint defines the reconfiguration scheme of system hardware and software resources in the fault status, and is critical to reconfiguration fault tolerance of the integrated modular avionics system. In this paper, we propose an approach for generating reconfiguration blueprints based on improved Q-learning, which considers multiple optimization objectives such as load balance, reconfiguration impact, reconfiguration time, and reconfiguration degradation. The simulated annealing framework is utilized to enhance the convergence performance of the traditional Q-learning strategy. Experimental results demonstrate that compared with the simulated annealing algorithm, the differential evolution algorithm, and the traditional Q-learning algorithm, the algorithm proposed has higher efficiency, and can generate the reconfiguration blueprints of better quality.
Keywords:reinforcement learning  Q-learning  simulated annealing algorithm  integrated modular avionics system  multi-objective optimization  reconfiguration  
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号