首页 | 本学科首页   官方微博 | 高级检索  
     

基于不完美先验信息的随机系数回归模型剩余寿命预测方法
作者姓名:万昌豪  刘志国  唐圣金  孙晓艳  司小胜
作者单位:1.火箭军工程大学 导弹工程学院, 西安 710025
基金项目:国家自然科学基金61703410国家自然科学基金61922089国家自然科学基金61573366国家自然科学基金61573076国家自然科学基金61773386国家自然科学基金61873273国家自然科学基金61873175陕西省自然科学基础研究计划2017JQ6015北京市自然科学基金重点项目B级KZ201710028028
摘    要:剩余寿命预测是设备预测与健康管理的核心问题,准确的剩余寿命预测可以在故障发生前进行有效的维护保养,以减小设备故障发生的概率。针对实际剩余寿命预测中先验信息不足或缺乏的问题,提出一种克服不完美先验信息影响的启发式剩余寿命预测方法。首先,利用非线性随机系数回归模型进行退化建模。其次,证明了基于单个设备现场退化数据,期望最大化(EM)算法的参数估计结果收敛于极大似然估计(MLE)算法的参数估计结果,并提出一种合理融合先验信息和现场信息的启发式剩余寿命预测方法。最后,通过数值仿真数据和实际锂电池退化数据对提出的结论和方法进行了验证,结果表明:启发式剩余寿命预测方法相比传统贝叶斯方法能够较好地克服不完美先验信息的影响,更为准确的预测设备地实际剩余寿命。 

关 键 词:不完美先验信息   参数估计   期望最大化(EM)   启发式方法   非线性随机系数回归模型   剩余寿命预测
收稿时间:2020-08-20
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号