首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM的飞行数据挖掘模型构建方法
引用本文:王志刚,王业光,杨宁,米禹丰,曲晓雷. 基于LSTM的飞行数据挖掘模型构建方法[J]. 航空学报, 2021, 42(8): 525800-525800. DOI: 10.7527/S1000-6893.2021.25800
作者姓名:王志刚  王业光  杨宁  米禹丰  曲晓雷
作者单位:航空工业沈阳飞机设计研究所,沈阳 110035
摘    要:提出了一种基于LSTM (Long Short Time Memory)模型的飞行历史数据挖掘模型的构建方法,此模型可以将飞行数据中有价值的目标数据自动提取出来。首先,通过滑动窗口法获得待检测数据;然后,将预先做好的训练样本数据输入到所构造的LSTM模型中进行训练,得到数据挖掘模型;最后,将待检测数据导入到训练好的LSTM模型中进行模式识别,将目标数据片段挖掘出来。结果表明,基于LSTM模型的飞行数据挖掘模型构建方法通用化程度高,可用于挖掘不同类型的目标数据,且识别率高,具有很高的工程应用价值。

关 键 词:LSTM  飞行历史数据  数据挖掘  模式识别  模型构建
收稿时间:2021-04-15
修稿时间:2021-05-08

Construction method of flight data mining model based on LSTM
WANG Zhigang,WANG Yeguang,YANG Ning,MI Yufeng,QU Xiaolei. Construction method of flight data mining model based on LSTM[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525800-525800. DOI: 10.7527/S1000-6893.2021.25800
Authors:WANG Zhigang  WANG Yeguang  YANG Ning  MI Yufeng  QU Xiaolei
Affiliation:AVIC Shenyang Aircraft Design and Research Institute, Shenyang 110035, China
Abstract:Based on Long Short Time Memory (LSTM) model, a method of constructing the flight history data mining model, which can automatically extract the valuable target data in flight data is proposed. First, to obtain the data to be detected by sliding window method. Then, to train the pre-made training sample data into the constructed LSTM model to get the data mining model. And finally, to model the pattern recognition of the detected data into the trained LSTM model. The results show that this method of constructing flight data mining model has high generalization degree, and can be used to mine different kinds of target data. The result also show that the recognition rate has high engineering application value.
Keywords:LSTM  flight history data  data mining  pattern recognition  model construction  
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号