首页 | 本学科首页   官方微博 | 高级检索  
     

基于粗糙集和神经网络的导弹故障诊断方法
引用本文:刘玮,宋贵宝,陈小卫. 基于粗糙集和神经网络的导弹故障诊断方法[J]. 海军航空工程学院学报, 2009, 24(2): 214-216, 220
作者姓名:刘玮  宋贵宝  陈小卫
作者单位:海军航空工程学院,训练部,山东,烟台,264001;海军航空工程学院,飞行器工程系,山东,烟台,264001;海军航空工程学院,研究生管理大队,山东,烟台,264001
摘    要:人工神经元网络(ANN)具有本质的非线性特性、并行处理能力以及自组织自学习的能力,但单独使用ANN处理问题时,往往会存在一些缺陷。文章介绍导弹驾驶仪故障智能诊断的一种新方法:首先,利用粗糙集原理约简故障特征属性数据;其次,用带动量项的批处理BP神经网络方法对故障数据进行训练并检验;最后,将故障数据处理后输入神经网络分类器,对故障实施诊断。

关 键 词:粗糙集  BP神经网络  故障诊断  导弹自动驾驶仪

Missile Autopilot Fault Diagnosis Based on Rough Set and Artificial Neural Networks
LIU Wei,SONG Gui-Baob and CHEN Xiao-weic. Missile Autopilot Fault Diagnosis Based on Rough Set and Artificial Neural Networks[J]. Journal of Naval Aeronautical Engineering Institute, 2009, 24(2): 214-216, 220
Authors:LIU Wei  SONG Gui-Baob  CHEN Xiao-weic
Affiliation:1.Naval Aeronautical and Astronautical University Department of Training; 2. Department of Airborne Vehicle Engineering; 3. Graduate Students' Brigade, Yantai Shandong 264001, China)
Abstract:Artificial neural networks have the essential nonlinear character, parallel processing ability, and the ability of self organization and self-learning. But when only using ANN to solve a problem, it often has some shortcomings. In this paper, a new intelligence fault diagnosis method on missile autopilot was presented. First, the fault attributions was reduced according to the rough set theory, the BP neural network which absorbed adding momentum ways and batch ways was trained. It made the fault diagnosis ...
Keywords:rough set  BP neural network  fault diagnosis  missile autopilot  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《海军航空工程学院学报》浏览原始摘要信息
点击此处可从《海军航空工程学院学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号