首页 | 本学科首页   官方微博 | 高级检索  
     

顾及不确定性的多光谱遥感图像分类及其不确定性度量和表达
引用本文:何彬彬,方涛,郭达志. 顾及不确定性的多光谱遥感图像分类及其不确定性度量和表达[J]. 宇航学报, 2006, 27(4): 686-689
作者姓名:何彬彬  方涛  郭达志
作者单位:1. 电子科技大学地表空间信息技术研究所,成都,610054
2. 上海交通大学图像处理与模式识别研究,上海,200030
3. 中国矿业大学环境与测绘学院,徐州,221008
基金项目:国家高技术研究发展计划(863计划);国家自然科学基金
摘    要:针对传统遥感图像分类方法缺乏考虑空间自相关性、分类模糊性以及分类误差的空间表达的缺点,采用顾及空间数据的空间自相关性和分类模糊性的邻域EM算法进行多光谱遥感图像分类。构建了四个不确定性度量指标一模糊隶属度残差、相对模糊隶属度最大离差、模糊隶属度熵和相对模糊隶属度熵对其分类的不确定性进行度量和可视化表达,克服了采用误差矩阵和Kappa系数进行传统遥感图像分类精度评价缺乏空间信息分布的不足。

关 键 词:不确定性  空间自相关  邻域EM算法
文章编号:1000-1328(2006)04-0686-04
收稿时间:2005-08-03
修稿时间:2005-08-032005-12-15

Uncertainty Measurement and Representation of Classification of Multi-Spectrum Remote Sensing Images Based on Uncertainty
HE Bin-bin,FANG Tao,GUO Da-zhi. Uncertainty Measurement and Representation of Classification of Multi-Spectrum Remote Sensing Images Based on Uncertainty[J]. Journal of Astronautics, 2006, 27(4): 686-689
Authors:HE Bin-bin  FANG Tao  GUO Da-zhi
Abstract:In order to overcome the deficiencies of traditional remote sensing image classification methods which spatial autocorrelation, classification fuzziness and spatial representation of classification error have not been considered, neighborhood EM algorithm considering spatial autocorrelation and classification fuzziness was adopted to classify the multi-spectrum remote sensing images. Four uncertainty measurement indexes--fuzzy membership residual, relative maximum fuzzy, membership deviation, fuzzy nenbership entropy and relative fuzzy membership entropy were founded to assessment the uncertainty of Neighborhood EM algorithm classification, which overcome the deficiencies of traditional uncertainty assessment methods of remote sensing images classification by error-matrix and Kappa coefficient
Keywords:Uncertainty   Spatial autocorrelation   Neighborhood EM algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号