首页 | 本学科首页   官方微博 | 高级检索  
     

微半球陀螺测控电路国内外现状与关键技术
引用本文:谷留涛,张卫平,刘朝阳,田梦雅,成宇翔. 微半球陀螺测控电路国内外现状与关键技术[J]. 导航与控制, 2019, 18(2): 26-32
作者姓名:谷留涛  张卫平  刘朝阳  田梦雅  成宇翔
作者单位:上海交通大学电子信息与电气工程学院微米/纳米加工技术重点实验室, 上海200240;上海交通大学电子信息与电气工程学院薄膜与微细技术教育部重点实验室, 上海200240;上海航天控制技术研究所惯性工程技术研究中心,上海,201109
基金项目:国家自然科学基金(编号:61574093);微米纳米加工技术国家级重点实验室基金(编号:614280504010317);航天科技创新基金(编号:16GFZ-JJ01-309);航天先进技术联合研究中心技术创新项目(编号:USCAST2016-5);上海专业技术服务平台项目(编号:16DZ2290103)
摘    要:微半球陀螺相比于传统的机械陀螺具有更小的尺寸,因此其对温度、湿度、磁场等外界环境的变化更为敏感。为了保证陀螺具有较好的工作表现,需要使外部驱动信号的频率严格锁定于工作模态的中心频率上,且陀螺输出信号幅值恒定。与此同时,由于微半球陀螺信号为微弱信号,故而需要采用微弱信号采集技术及反馈技术对其进行处理,并且通过解调控制算法得到输出信号。阐述了微半球陀螺基本测控电路的国内外发展现状,并从Sigma-delta、模态匹配、正交补偿、温度补偿等角度分析了微半球陀螺测控电路的关键技术。

关 键 词:微半球陀螺  微弱信号  测控电路  Sigma-delta  模态匹配

Development Status and Key Technologies of Micro-hemispherical Gyroscope Measurement and Control Circuits
GU Liu-tao,ZHANG Wei-ping,LIU Zhao-yang,TIAN Meng-ya and CHENG Yu-xiang. Development Status and Key Technologies of Micro-hemispherical Gyroscope Measurement and Control Circuits[J]. Navigation and Control, 2019, 18(2): 26-32
Authors:GU Liu-tao  ZHANG Wei-ping  LIU Zhao-yang  TIAN Meng-ya  CHENG Yu-xiang
Affiliation:National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240; Key Laboratory of Thin Film and Microfabrication(Ministry of Education), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240,National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240; Key Laboratory of Thin Film and Microfabrication(Ministry of Education), School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240,Shanghai Aerospace Control Technology Institute, Engineer Research Center of Inertia, Shanghai 201109,Shanghai Aerospace Control Technology Institute, Engineer Research Center of Inertia, Shanghai 201109 and Shanghai Aerospace Control Technology Institute, Engineer Research Center of Inertia, Shanghai 201109
Abstract:Compared with the traditional mechanical gyroscope, micro-hemispherical gyroscope has smaller size, so it is more sensitive to changes in temperature, humidity, magnetic field and other external environments. In order to ensure better performance of gyroscope, it is necessary to lock the frequency of external driving signal strictly on the central frequency of working mode, and the output signal amplitude of gyroscope is constant. At the same time, because the signal of micro-hemispherical gyroscope is weak, it needs to be processed by weak signal acquisition technology and feedback technology, and the output signal is obtained by demodulation control algorithm. In this paper, the development status of basic measurement and control circuit for micro-hemispherical gyroscope at home and abroad is described, and the key technologies of measurement and control circuit for micro-hemispherical gyroscope are analyzed from Sigma-delta, mode matching, quadrature compensation and temperature compensation.
Keywords:micro-hemispherical gyroscope   weak signal   measurement and control circuit   Sigma-delta   mode matching
本文献已被 万方数据 等数据库收录!
点击此处可从《导航与控制》浏览原始摘要信息
点击此处可从《导航与控制》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号