首页 | 本学科首页   官方微博 | 高级检索  
     

基于渐消卡尔曼滤波器的定位系统设计
引用本文:杨柳庆 肖前贵 牛 妍等. 基于渐消卡尔曼滤波器的定位系统设计[J]. 南京航空航天大学学报, 2012, 44(1): 134-138
作者姓名:杨柳庆 肖前贵 牛 妍等
作者单位:南京航空航天大学自动化学院;南京航空航天大学无人机研究院
摘    要:
针对无人机捷联式惯性导航系统(Strap-down inertial navigation system,SINS)定位精度低、全球卫星定位系统(Global position system,GPS)定位的非自主性,建立了一种无人机SINS/GPS定位信息融合系统。采用渐消Kalman滤波技术,有效防止了SINS/GPS组合导航系统的滤波发散。采用自适应运算法则,从理论上证明了渐消卡尔曼滤波器的稳定性,得到了滤波器稳定要求的新的条件,与以往研究比较,条件更为宽泛。分别进行了SINS/GPS常规卡尔曼滤波仿真和渐消卡尔曼滤波仿真,结果表明:采用渐消卡尔曼滤波技术在工程实践上可以有效提高无人机的导航定位精度,并且易于工程实现。

关 键 词:无人机  SINS/GPS组合导航系统  渐消Kalman滤波  稳定性

Design of Localization System Based on Reducing Kalman Filter
Yang Liuqing,Xiao Qiangui,Niu Yan,Hu Shousong. Design of Localization System Based on Reducing Kalman Filter[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(1): 134-138
Authors:Yang Liuqing  Xiao Qiangui  Niu Yan  Hu Shousong
Affiliation:1(1.College of Automation Engineering,Nanjing University of Aeronautics & Astronautics,Nanjing,210016,China;2.Research Institute of Unmanned Aircraft,Nanjing University of Aeronautics & Astronautics,Nanjing,210016,China)
Abstract:
Aiming at the low precision of navigation and position in strap-down inertial navigation system(SINS) of unmaned aerial vehicle(UAV) and the dependence of global position system(GPS),the SINS/GPS localization information fusion system is designed.The reducing Kalman filter is introduced to prevent SINS from distorting filter.The stability of the reducing Kalman filter is analyzed by a standard adaptive algorithm to obtain new and low requirement conditions for stability.Through derivation and simulation of reducing factor,the filter effect on system of reducing Kalman filter is compared with that of general filter.The simulation results show that reducing Kalman filter can improve the accuracy of navigation localization for UAV and can meet the need of engineering realization.
Keywords:unmanned aerial vehicle  SINS/GPS  reducing Kalman filter  stability
本文献已被 CNKI 等数据库收录!
点击此处可从《南京航空航天大学学报》浏览原始摘要信息
点击此处可从《南京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号