首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的非合作航天器姿态估计
作者姓名:杨兴昊  佘浩平  李海超  金明春  宋建梅
作者单位:北京理工大学宇航学院,北京100081;中国空间技术研究院,北京100086
基金项目:国家自然科学基金(61773383)
摘    要:针对空间非合作航天器姿态测量时受光照和地球背景影响大的问题,提出了一种基于卷积神经网络的端到端姿态估计方法.在该方法中,主干网络采用AlexNet与ResNet.首先,移除主干网络末端的全连接层,并列连接3个全连接层,采用三分支网络分别对姿态角进行估计.然后,设计了将分类问题与回归问题相结合的损失函数,通过分类方法将姿态估计限定在某一范围内,再使用回归方法进一步微调姿态.姿态分类损失函数确定姿态角度基准点,姿态回归损失函数对估计角度进行微调.相较于仅采用回归方法进行姿态估计,此方法能够有效减小姿态估计平均绝对误差、标准差与最大误差.实验对比了不同主干网络的测量精度,平均绝对误差在0.376°~0.746°之间,最优标准差为0.474°.

关 键 词:深度学习  姿态估计  非合作目标
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《导航定位与授时》浏览原始摘要信息
点击此处可从《导航定位与授时》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号