首页 | 本学科首页   官方微博 | 高级检索  
     

基于 RBF 神经网络的 FADS 系统及其算法研究
作者姓名:赵磊  陆宇平
作者单位:南京航空航天大学自动化学院
基金项目:国家自然科学基金(91016017)
摘    要:以典型的十字形布局的大气数据传感系统及其跨声速应用为研究对象,基于RBF神经网络,设计了新的FADS算法和故障检测处理方法。将测压点按不同功能进行精细的划分和组合,形成更加精简、目的性更强且相互独立的RBF网络处理子模块,利用各子网络模块提供的冗余特性,使用基于故障特征向量表的方法,实施简单而有效的故障检测与处理。仿真验证表明,迎角与侧滑角的测量误差不大于0.5°,且故障检测是有效的。

关 键 词:嵌入式大气数据传感系统  RBF神精网络  故障特征向量表
收稿时间:2010-12-01
修稿时间:2011-10-26
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《飞机设计》浏览原始摘要信息
点击此处可从《飞机设计》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号