首页 | 本学科首页   官方微博 | 高级检索  
     检索      

平流层臭氧和辐射场的季节分布特征
引用本文:商林,刘毅,王永,田文寿.平流层臭氧和辐射场的季节分布特征[J].空间科学学报,2015,35(1):40-49.
作者姓名:商林  刘毅  王永  田文寿
作者单位:1.兰州大学大气科学学院 半干旱气候变化教育部 重点实验室 兰州 730000
基金项目:国家重点基础研究发展计划项目,国家自然科学基金项目
摘    要:利用美国NCAR化学气候耦合模式WACCM3对平流层温度场、风场、臭氧及辐射场进行了模拟.结果表明,在适宜飞艇长期驻留的准零风层高度20~22km(对应大气压强范围为50~30hPa,以下均采用气压值表征对应大气高度),7-8月风速小于5m·s-1的风带可长期稳定在40°N以北.臭氧空间分布显示,在30hPa气压高度处中国地区臭氧浓度出现了带状分布,30hPa高度以下低纬度地区臭氧浓度低于中纬度地区.平流层太阳加热率的时空变化表明,在平流层上层,太阳加热率可达100×10-6K·s-1,而在平流层下层,只有10×10-6K·s-1.6-8月中国区域的太阳加热率大于9月;在100~30hPa高度内,中纬度地区太阳加热率高于低纬度地区,在30hPa高度以上,低纬度地区太阳加热率高于中纬度地区;8-9月30~40hPa高度处,太阳加热率的空间变化较小.在30hPa高度上,太阳加热率在40°N昼夜变化最大;50hPa高度处,太阳加热率的昼夜变化小于30hPa高度处,而且白天太阳加热率出现极大值的纬度明显靠北.平流层低纬度地区的长波加热率小于中纬度地区.青藏高原由于地形特殊,其6-7月的臭氧浓度、太阳加热率和长波加热率均小于同纬度其他地区. 

关 键 词:大气物理与大气环境    季节变化    WACCM3模式    风场    臭氧    辐射场
收稿时间:2014-03-25

Seasonal Distribution of Ozone and Radiation Field at the Stratosphere
SHANG Lin,LIU Yi,WANG Yong,TIAN Wenshou.Seasonal Distribution of Ozone and Radiation Field at the Stratosphere[J].Chinese Journal of Space Science,2015,35(1):40-49.
Authors:SHANG Lin  LIU Yi  WANG Yong  TIAN Wenshou
Institution:1.Key Laboratory of Semi-Arid Climate Change of the Ministry of Education, College ofAtmospheric Sciences, Lanzhou University, Lanzhou 7300002.Key Laboratory of the Middle Atmosphere and Global Environmental Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 1000293.Shandong Provincial Climate Center, Jinan 250031
Abstract:The coupled chemistry-climate model WACCM3 (Whole Atmosphere Community Climate Model) developed by NCAR is applied to study the seasonal variations of the stratospheric temperature, wind, ozone and radiation fields. The stratospheric quasi-zero wind layer at around 20~22km (i.e., atmosphere pressure range is 50~30hPa), where the wind speed is less than 5m·s-1 and is stable to the north of 40°N during July and August, is suitable for long-term stay of airships. There appears a belt of ozone at 30hPa over China and ozone concentrations are greater in the mid-latitudes than in the lower latitudes below 30hPa. There are significant seasonal spatial variations in solar heating rates in the stratosphere. In the upper stratosphere, the maximum solar heating rate reaches 100×10-6K·s-1 while in the lower stratosphere the maximum solar heating rate is only 10×10-6K·s-1. The solar heating rate is greater in June to August than in September over China. The solar heating rate is greater in the mid-latitudes than in the lower latitudes between 100hPa and 30hPa and is greater in the lower latitudes than in the mid-latitudes above 30hPa. The change of solar heating rate is small in August and September at 30hPa and 40hPa. The maximum diurnal variation of solar heating rate appears at 40°N at 30hPa. At 50hPa, the diurnal variation of solar heating rate is smaller than that at 40hPa and the maximum variation occurs farther south. The longwave heating rate is smaller in the lower latitudes than in the mid-latitude stratosphere. In particular condition of terrain, the ozone concentration, solar heating rate and longwave heating rate are smaller over Tibetan Plateau than other areas at the same latitude. 
Keywords:Atmospheric physics and atmospheric environment  Seasonal distribution  WACCM3  Wind  Ozone  Radiation field
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《空间科学学报》浏览原始摘要信息
点击此处可从《空间科学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号