首页 | 本学科首页   官方微博 | 高级检索  
     检索      

涡轮动叶凹槽状叶顶传热特性和气动性能的不确定性量化研究
引用本文:黄明,李志刚,李军,宋立明.涡轮动叶凹槽状叶顶传热特性和气动性能的不确定性量化研究[J].推进技术,2022,43(3):225-237.
作者姓名:黄明  李志刚  李军  宋立明
作者单位:西安交通大学 叶轮机械研究所 陕西 西安 710049,西安交通大学 叶轮机械研究所 陕西 西安 710049,西安交通大学 叶轮机械研究所 陕西 西安 710049,西安交通大学 叶轮机械研究所 陕西 西安 710049
基金项目:国家自然科学基金(51936008)和国家科技重大专项(2017-III-0010-0036)。
摘    要:基于非嵌入式多项式混沌展开方法,结合Smolyak稀疏网格技术与Sobol Indic方法构建了涡轮动叶凹槽状叶顶传热特性和气动性能不确定性量化分析系统。研究并量化了几何参数叶顶间隙和运行工况参数主流进口总温与气膜冷却吹风比不确定性对涡轮动叶凹槽状叶顶气热特性的影响。不确定性分析结果表明:在考虑叶顶间隙与主流进口总温和吹风比不确定性的情况下,叶顶换热量 基本符合正态分布。 的统计均值相对于设计值增加13.56%并且其偏离设计值10%的概率高达65.68%。相比叶顶尾缘区域,叶顶前缘部分的换热量对不确定性输入更加敏感。前缘区域的叶片壁面换热量 的不确定性明显大于尾缘部分。在叶顶间隙与主流进口总温和吹风比不确定性的影响下,0-80%轴向弦长区域内叶顶总压损失系数存在微小偏差,但在80%轴向弦长以后区域总压损失系数的不确定性偏差会达到约50%。敏感度分析的结果表明主流进口总温是叶片换热性能不确定性的主导变量,其对 与 不确定性的贡献分别为93.87%和98.32%。叶顶气动性能的不确定性则完全由叶顶间隙控制,其对叶顶总压损失系数不确定性的方差占比高达86.44%。与主效应相比,各变量间的二阶交互效应对叶顶气热性能的影响几乎可以忽略不计。

关 键 词:涡轮动叶凹槽状叶顶  气膜冷却  传热特性  气动性能  不确定性量化
收稿时间:2020/9/16 0:00:00
修稿时间:2022/1/17 0:00:00

Uncertainty Quantification Analysis on Heat Transfer Characteristics and Aerodynamic Performance of Turbine Blade Squealer Tip
HUANG Ming,LI Zhi-gang,LI Jun,SONG Li-ming.Uncertainty Quantification Analysis on Heat Transfer Characteristics and Aerodynamic Performance of Turbine Blade Squealer Tip[J].Journal of Propulsion Technology,2022,43(3):225-237.
Authors:HUANG Ming  LI Zhi-gang  LI Jun  SONG Li-ming
Abstract:The heat transfer characteristics and aerodynamic performance uncertainty quantification analysisi system of the turbine blade squealer tip was established in this paper. The non-embedded polynomial chaos expansion method, integrated with Smolyak Sparse grid, Sobol Indic technology for the uncertainty quantification analysis system was developed. It was investigated and quantificated that the effects of the tip clearance, mainstream inlet total temperature and blowing ratio uncertainty on the aerothermal performance of blade squealer tip. The uncertainty analysis results show that heat flux of squealer tip basically conforms to the normal distribution when considering the uncertainty of tip clearance, mainstream inlet total temperature and bow ratio. The statistical mean value of the increased by 13.56% relative to the designed value and the probability of 10% deviation from the designed value is as high as 65.68%. The heat flux of squealer tip leading edge is more snesitive to uncertainty input by comparison to the trailing edge. The uncertainty of the heat flux on the blade surface near the leading edge region is obviously larger than that of the trailing edge area. The minor deviations of the total pressure loss coefficients at the squealer tip within 0-80% axial chord regions is observed considering the tip clearance, mainstream inlet total temperature and blow ration uncertainty inputs. However, the uncertainty error of the total pressure loss coefficient at the squealer tip after the 80% axial chord regions would obtained about 50%. The sensitive analysis results show that the mainstream inlet total temperature is the dominant variable in the uncertainty of the blade heat transfer performance, and its contribution to the uncertainty of and is 93.87% and 98.32%, respectively. The uncertainty of the aerodynamic performance of the squealer tip is completely domianted by the tip clearance, and the uncertainty variance of the tip total pressure loss coefficient obtained as 86.44%. Compared with the main effect of the tip clerance, mainstream inlet total temperature and bow ratio uncertainty input, the influence of the second-order interaction effect between the variables on the squealer tip aerothermal performance is almost negligible.
Keywords:Turbine Blade Squealer Tip  Film Cooling  Heat Transfer  Aerodynamic Performance  Uncertainty Quantification
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号