A prediction model of short-term ionospheric foF2 based on AdaBoost |
| |
Authors: | Xiukuan Zhao Baiqi Ning Libo Liu Gangbing Song |
| |
Affiliation: | 1. Key Laboratory of Ionospheric Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;2. Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;3. Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA;4. School of Civil Engineering, Dalian University of Technology, Dalian, Liaoning, China |
| |
Abstract: | In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years’ foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years’ data were used as a training dataset and the second eleven years’ data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper. |
| |
Keywords: | AdaBoost Ionosphere foF2 Short-term prediction |
本文献已被 ScienceDirect 等数据库收录! |
|