首页 | 本学科首页   官方微博 | 高级检索  
     检索      


GNSS-Reflectometry: Forest canopies polarization scattering properties and modeling
Authors:Xuerui Wu  Shuanggen Jin
Institution:1. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;2. Department of Environment Resources and Management, Chifeng College, Chifeng 024000, China;3. State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100859, China
Abstract:Nowadays, GNSS-Reflectometry (GNSS-R) can be a new promising remote sensing tool in the ocean, snow/ice and land surfaces, e.g., vegetation biomass monitoring. Although GNSS-R provides a potentially special L-band multi-angular and multi-polarization measurement, the theoretical vegetation scattering properties and mechanisms for GNSS-R are not understood clearly. In this paper, the GNSS-R vegetation polarization scattering properties are studied and modeled at different incidence angles (specular direction). The bistatic scattering model Bi-mimics is employed, which is the first-order radiative transfer equation. As a kind of forest stand, the Aspen’s crown layer is composed of entire leaves, and its parameters in Mimics handbook are used as model input. The specular circular polarizations (co-polarization RR and cross-polarization LR) are simulated. For cross-polarization, the received polarization is assumed as a linear (horizontal and vertical) polarizations and ±45° linear polarizations. Therefore, the HR VR, +45R and −45R polarizations are simulated here. Contributions from different scattering components at RR, LR and VR polarization are also presented. For co-polarization, it is large in the whole specular angles (10–80°). The scattering trends of the other cross polarization (HR, LR, +45R and −45R) are a little similar when compared to the RR and RV. Therefore, the RHCP and V polarizations are more favorable to collect the reflected signals. The trunk heights and crown depths do not affect the scattering trends of RR, RV and RL, while the trunk height has some effect on the scattering amplitude of different polarizations. The azimuth angle has more effects on RR, RL and RV scattering, especially in lower than 50°. The observation angles and polarization combinations are extremely important for GNSS-R remote sensing.
Keywords:GNSS-R  Forest canopy  Scattering  Polarization  Specular
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号