首页 | 本学科首页   官方微博 | 高级检索  
     

非完备先验知识下的滑动轴承摩擦状态识别
引用本文:张峻宁,张培林,李兵,吴定海,杨玉栋. 非完备先验知识下的滑动轴承摩擦状态识别[J]. 航空动力学报, 2017, 32(7): 1704-1711. DOI: 10.13224/j.cnki.jasp.2017.07.022
作者姓名:张峻宁  张培林  李兵  吴定海  杨玉栋
作者单位:1.军械工程学院 七系,石家庄 050003
基金项目:国家自然科学基金(51205405,51305454)
摘    要:
针对监测系统通常无法全部获取轴承摩擦退化状态的先验知识,无法建立全摩擦状态的识别模型,从状态间的相似性出发,提出一种无先验知识下的基于灰色B型绝对关联度(AGRDB)和稀疏编码的滑动轴承状态识别方法。针对稀疏表示不具有监督性的缺陷,在稀疏编码的目标函数中引入AGRDB算法,训练类间距离最大、类内距离最小的正常润滑和严重摩擦的编码;在相同字典下建立具有一致判别性的稀疏表示模型,通过比较当前状态与正常润滑、严重摩擦的稀疏编码与重构误差,进一步识别当前轴承的状态,仿真信号和柴油机轴承实验的结果表明:所提方法能够在较少先验知识下识别出滑动轴承的早期摩擦状态(100~216min)和严重摩擦状态(216~384min),且算法简单,适合较少样本下的滑动轴承摩擦故障在线监测。 

关 键 词:非完备先验知识   滑动轴承   状态识别   灰色B型绝对关联度(AGRDB)   稀疏编码
收稿时间:2016-06-01

Plain bearing friction state recognition without complete prior knowledge
ZHANG Junning,ZHANG Peilin,LI Bing,WU Dinghai,YANG Yudong. Plain bearing friction state recognition without complete prior knowledge[J]. Journal of Aerospace Power, 2017, 32(7): 1704-1711. DOI: 10.13224/j.cnki.jasp.2017.07.022
Authors:ZHANG Junning  ZHANG Peilin  LI Bing  WU Dinghai  YANG Yudong
Abstract:
Given that the prior knowledge of all kinds of bearing friction degradation model cannot be attained usually,starting from the similarities of different states,a bearing friction fault's state recognition algorithm without prior knowledge was proposed based on sparse representation and absolute grey relational degree of B-mode (AGRDB).First,for the defects of sparse representation without supervision,the AGRDB was involved in the sparse representation,to get normal and severe friction codes under the largest distance between classes and smallest distance within the classes.Second,sparse representation model with discriminant sex was established under the same dictionary.And current state of the bearing was identified by comparing sparse coding and reconstruction error of normal lubrication and serious friction.Finally,the results of simulation signal and diesel engine bearing experiment show that the proposed method can better identify the sliding bearing early friction state (100-216 min) and serious friction state (216-384 min) under the less prior knowledge.And this algorithm is suitable for plain bearing fault monitoring under less samples.
Keywords:without complete prior knowledge  plain bearing  condition recognition  absolute grey relational degree of B-mode (AGRDB)  sparse coding
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号