首页 | 本学科首页   官方微博 | 高级检索  
     

基于二维表的频繁集组合方法
引用本文:刘山,孟维芬,廖勇毅. 基于二维表的频繁集组合方法[J]. 中国民航学院学报, 2007, 25(1): 52-54
作者姓名:刘山  孟维芬  廖勇毅
作者单位:中国民航大学计算机科学与技术学院 天津300300
基金项目:国家自然科学基金项目(60372034)
摘    要:
挖掘关联规则时,频度集的计算是一个关键问题。现有算法大多从apriori,fp-growth算法演化而来,这些方法都存在有组合爆炸问题:apriori算法是候选模式造成的,而fp-growth算法是条件模式基造成的。因此,对于具有稠密数据的事务数据库现有的方法无法完成频度集的计算,即使是现有最好的fp-growth算法。将给出一种基于迭代思想的频度集计算方法,既不用频繁扫描数据又不用组合计算,实验表明此方法是十分有效的频度集计算方法。

关 键 词:Apriori算法  关联规则  频繁项集  fp-tree树
文章编号:1001-5000(2007)01-0052-03
修稿时间:2006-04-07

Combining Frequent Sets Method on 2-Dimension Table
LIU Shan,MENG Wei-fen,LIAO Yong-yi. Combining Frequent Sets Method on 2-Dimension Table[J]. Journal of Civil Aviation University of China, 2007, 25(1): 52-54
Authors:LIU Shan  MENG Wei-fen  LIAO Yong-yi
Abstract:
When we excavate connection rules,the frequency collection computation is a key problem.The existing algorithm evolves mostly from apriori and the fp-tree algorithms.These methods all involves combinatorial explosion:the apriori algorithm comes from the candidate pattern,but the fp-tree algorithm evolves from the condition pattern base.Therefore,regarding the routine database with dense data,the existing method is unable to complete the frequency collection computation,even if with the best existine fp-tree algorithm.This paper will produce a frequency collection computational method based on the iteration thought neither with the frequent scanning data nor with the combinatorial computation.The experiments show that this method is a very effective frequency collection computational method.
Keywords:apriori algorithm  association rules  frequent item-sets  fp-tree
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号