首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Remote sensing of aerosol and radiation from geostationary satellites
Authors:Istvan Laszlo  Pubu Ciren  Hongqing Liu  Shobha Kondragunta  J Dan Tarpley  Mitchell D Goldberg
Institution:

aNational Oceanic and Atmospheric Administration, 5200 Auth Rd., Camp Springs, MD 20746, USA

bQSS Group Inc., 4500 Forbes Boulevard, Lanham, MD 20706, USA

Abstract:The paper presents a high-level overview of current and future remote sensing of aerosol and shortwave radiation budget carried out at the US National Oceanic and Atmospheric Administration (NOAA) from the US Geostationary Operational Environmental Satellite (GOES) series. The retrievals from the current GOES imagers are based on physical principles. Aerosol and radiation are estimated in separate processing from the comparison of satellite-observed reflectances derived from a single visible channel with those calculated from detailed radiative transfer. The radiative transfer calculation accounts for multiple scattering by molecules, aerosol and cloud and absorption by the major atmospheric gases. The retrievals are performed operationally every 30 min for aerosol and every hour for radiation for pixel sizes of 4-km (aerosol) and 15- to 50-km (radiation). Both retrievals estimate the surface reflectance as a byproduct from the time composite of clear visible reflectances assuming fixed values of the aerosol optical depth. With the launch of GOES-R NOAA will begin a new era of geostationary remote sensing. The Advanced Baseline Imager (ABI) onboard GOES-R will offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS) flown on the NASA Earth Observing System (EOS) satellites. The ABI aerosol algorithm currently under development uses a multi-channel approach to estimate the aerosol optical depth and aerosol model simultaneously, both over water and land. Its design is strongly inspired by the MODIS aerosol algorithm. The ABI shortwave radiation budget algorithm is based on the successful GOES Surface and Insolation Product system of NOAA and the NASA Clouds and the Earth’s Radiant Energy System (CERES), Surface and Atmospheric Radiation Budget (SARB) algorithm. In all phases of the development, the algorithms are tested with proxy data generated from existing satellite observations and forward simulations. Final assessment of the performance will be made after the launch of GOES-R scheduled in 2012.
Keywords:Aerosol  Shortwave radiation budget  Geostationary satellite
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号