摘 要: | 机械展开式再入飞行器由于气动面积较大,可以有效地进行气动捕获和气动减速,但需研究分析主要气动外形参数对气动性能的影响并通过优化进一步提高减速效果。针对计算流体力学(Computational fluid dynamics, CFD)开展再入飞行器外形优化计算量大、耗时多的问题,提出了一种基于反向传播(back propagation, BP)神经网络的气动性能优化方法。在对再入飞行器参数化建模的基础上,首先采用正交试验设计生成样本,通过CFD方法进行高精度气动力性能计算,对样本计算结果进行方差分析;再利用BP神经网络对生成的样本集进行非线性拟合,构建神经网络气动性能近似模型;最后使用多岛遗传算法和BP神经网络模型开展阻力最大的气动外形设计优化,并对优化结果进行参数灵敏度分析。结果显示,该优化方法可以快速准确地求解优化模型,在保证精度的同时大幅提升了计算效率,可为未来工程设计和应用提供参考。
|