首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM的浮动车行驶模式判断模型
引用本文:诸彤宇,郭胜敏,吕卫锋. 基于SVM的浮动车行驶模式判断模型[J]. 北京航空航天大学学报, 2008, 34(8): 976-980
作者姓名:诸彤宇  郭胜敏  吕卫锋
作者单位:北京航空航天大学 软件开发环境国家重点实验室, 北京 100191
基金项目:国家高技术研究发展计划(863计划)
摘    要:
浮动车在低速情况下存在两种行驶模式,如不能对上述模式进行准确区分,将严重影响浮动车实时路况计算的精度和效率.研究和设计了一个基于支持向量机(SVM,Support Vector Machine)的浮动车行驶模式判断模型,并针对性地提出了一种简单的基于隶属度矩阵的特征评价和选择方法.实验表明通过上述方法选择的特征子集所训练的分类器在测试样本集上具有92.6%的分类准确性;经过行驶模式分析后,浮动车系统的准确性有显著提升. 

关 键 词:浮动车   采样区间   支持向量机   特征提取   隶属度矩阵
收稿时间:2007-07-23

SVM based float car driving mode classification model
Zhu Tongyu,Guo Shengmin,Lü Weifeng. SVM based float car driving mode classification model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(8): 976-980
Authors:Zhu Tongyu  Guo Shengmin  Lü Weifeng
Affiliation:State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:
There are two kinds of driving modes of float car at low speed.The misjudgement of these modes will affect the accuracy and efficiency of the calculation of float car real-time traffic conditions seriously.A SVM(support vector machine) based float car driving mode classification model was studied and designed,and a novel membership matrix-based feature evaluation and selection method was proposed.The classifier whose features are selected through this method made a great classification accuracy of 92.6% in ...
Keywords:float car  sampling interval  support vector machine  feature selection  membership matrix  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号