首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of Rotational Motion of a Symmetrical Satellite with Viscoelastic Rods
Authors:A V Shatina
Institution:(1) Moscow Institute of Radiotechnics, Electronics, and Automation (Technical University), Moscow, Russia
Abstract:We study the motion of a symmetrical satellite with a pair of flexible viscoelastic rods in a central Newtonian gravitational field. A restricted problem formulation is considered, when the satellite's center of mass moves along a fixed circular orbit. A small parameter epsi is introduced which is inversely proportional to the stiffness of flexible elements. Another small parameter mgr is equal to the ratio of the squared orbital angular velocity and the squared magnitude of the initial angular velocity of the satellite. In order to describe the satellite rotational motion relative to the center of mass, we use the canonical Andoyer variables. In the undisturbed formulation of the problem, i.e., at epsi = 0 and mgr = 0, these variables are the action–angle variables. Equations describing the evolution of motion are derived by an asymptotic method which combines the method of separating motions for systems with an infinite number of degrees of freedom and the Krylov–Bogolyubov method for systems with fast and slow variables. The manifolds of stationary motions are found, and their stability is investigated on the basis of equations in variations. Phase portraits are constructed which describe the rotational motion of a satellite at the stage of slow dissipative evolution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号