首页 | 本学科首页   官方微博 | 高级检索  
     

基于自组织神经网络的软件功能测试数据自动生成
引用本文:傅博. 基于自组织神经网络的软件功能测试数据自动生成[J]. 航空学报, 2006, 27(5): 888-892
作者姓名:傅博
作者单位:北京航空航天大学,工程系统工程系,北京,100083
摘    要:
针对面向软件功能的测试数据自动生成问题,提出了一种动态自组织特征映射方法,用于生成揭示软件功能故障的测试数据(简称故障数据)。该方法主要有两部分组成,①采用具有全局多峰搜索特性的小生境遗传算法,在输入空间内搜索功能测试数据,生成少量的初始故障数据;②由初始故障数据,采用具有联想和分类能力的可变结构自组织特征映射,不断迭代生成大量相近而不同的故障数据,以便给开发者提供引发这些软件故障的信息,从而确定软件故障行为的模式或假设。用某型空空导弹发射控制软件进行了实验,运行结果表明了方法的有效性,故障数据生成效率高于遗传算法和随机法。

关 键 词:软件测试  自组织特征映射  神经网络  小生境遗传算法  测试数据自动生成
文章编号:1000-6893(2006)05-0888-05
收稿时间:2005-05-09
修稿时间:2005-05-09

Automatic Software Functional Test Data Generation Based on Dynamic Self-organizing Neural Networks
FU Bo. Automatic Software Functional Test Data Generation Based on Dynamic Self-organizing Neural Networks[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 888-892
Authors:FU Bo
Affiliation:Department of System Engineering of Engineering Technology, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:
The automatic test data generation for program functions is one of the elementary problems in software functional testing.This paper addresses the problem by presenting a technique of dynamic self-organizing neural networks to automatically generate test data for revealing software faults.The technique consists of two parts: the first one is niche genetic algorithm,which generate a small initial fault test data set in software input domain;the second one is dynamic self-organizing feature map,which can repeatedly generate lots of test data for finding faults by using initial fault test data set.These can provide the developer with fault data information to identify fault patterns or hypothesis in software.The approach is used on a C program which is part of missile launch control system.Experimental results show that the method is more efficient than niche genetic algorithms and random techniques.
Keywords:software test  self-organizing feature map  neural network  niche genetic algorithm  automatic test data generation
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号