首页 | 本学科首页   官方微博 | 高级检索  
     

RBF网络用于边界层转捩中抽吸流优化控制
引用本文:侯宏,杨建华. RBF网络用于边界层转捩中抽吸流优化控制[J]. 航空学报, 2002, 23(6): 556-559
作者姓名:侯宏  杨建华
作者单位:西北工业大学,应用物理系,陕西,西安,710072;西北工业大学,自动控制系,陕西,西安,710072
基金项目:国家自然科学基金资助项目 (1990 40 0 8)
摘    要: 在抽吸气流控制边界层转捩问题中 ,将径向基神经网络用于抽吸流速与转捩位置间的函数关系建模 ,构造了网络结构 ,利用一组两通道抽吸流控制转捩的实验数据训练网络 ,获得了优化的网络参数。在此基础上 ,利用训练网络所获得的输入 /输出关系模型求解了最优抽吸流速。结果表明 ,RBF网络可有效地应用于边界层转捩主动控制中的系统函数关系建模。

关 键 词:抽吸气流  转捩  径向基网络
文章编号:1000-6893(2002)06-0556-04
修稿时间:2001-06-21

PLANT IDENTIFICATION IN ACTIVE CONTROL OF LAMINAR BOUNDARY-LAYER TRANSITION BY SUCTION USING RBF NEURAL NETWORK
HOU Hong ,YANG Jian hua. PLANT IDENTIFICATION IN ACTIVE CONTROL OF LAMINAR BOUNDARY-LAYER TRANSITION BY SUCTION USING RBF NEURAL NETWORK[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(6): 556-559
Authors:HOU Hong   YANG Jian hua
Affiliation:HOU Hong 1,YANG Jian hua 2
Abstract:A Radial Basis Function (RBF) neural network is applied to plant identification for active control of laminar boundary layer transition by suction. A suitable RBF structure is selected and its optimal parameters are obtained by training a network with real experimental data from a two channel suction system. The plant model from the trained network, which represents the plant response, can be used successfully to solve the optimal suction flow rates instead of using an assumed input/output function. Simulation results show that the RBF neural network is an effective tool in plant identification for the nonlinearly constrained optimization problem of laminar flow control.
Keywords:suction  laminar turbulence transition  radial basis function neural network
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号