首页 | 本学科首页   官方微博 | 高级检索  
     检索      


CCISS,Vascular and BP Reg: Canadian space life science research on ISS
Authors:Richard L Hughson  J Kevin Shoemaker  Philippe Arbeille
Institution:1. Schlegel-University of Waterloo Research Institute for Aging, Waterloo, ON, Canada N2L3G1;2. University of Western Ontario, London, Canada N6A 3K7;3. UMPS-CERCOM Médecine Physiologie Spatiale – Université-Hôpital Trousseau, Tours, 37044, France
Abstract:A comprehensive goal of the Canadian Space Agency studies (CCISS, Vascular and BP Reg) has been to investigate the efficacy of current exercise countermeasures to maintain cardiovascular and cerebrovascular health on return to Earth after up to 6-months in space. Results from the CCISS experiments revealed no significant change of in-flight heart rate during daily activities or sleep, and small, but variable between astronauts, post-flight elevation. The between astronaut differences were exaggerated during measurement of spontaneous baroreflex slope, which was reduced post-flight (P<0.05) during paced breathing with 3 astronauts having significant correlations between reduced baroreflex and reduced RR-interval (consistent with reduced fitness). Cerebrovascular autoregulation and CO2 response were mildly impaired after flight. Some loss of in-flight fitness of astronauts in Vascular was reflected by the increase in HR at a work rate of 161±46 W of 12.3±10.5 bpm, 10.4±5.9 bpm and 13.4±5.7 bpm for early-flight, late-flight and R+1, respectively. On return to gravity, changes in resting heart rate for supine (5.9±3.5 bpm), sit (8.1±3.3 bpm) and stand (10.3±10.0 bpm) were small but variable between individuals (from −5 bpm to +20 bpm in post-flight standing) and not related to the change in exercise heart rate. In Vascular astronauts, pulse wave transit time measured to the finger tended to be reduced post-flight and carotid artery distensibility was significantly reduced (P=0.03, and n=6). The heart rate and baroreflex data suggest that some astronauts return with cardiovascular deconditioning in spite of the exercise regimes. However, greater arterial stiffness is common among all astronauts studied to date. The new CSA project, BP Reg, will monitor inflight blood pressure in an attempt to identify astronauts in greater need for countermeasures. Future research should focus on whether Vascular changes in astronauts might make them an appropriate model to study the mechanisms of arterial aging on Earth.
Keywords:Spaceflight  Cardiovascular deconditioning  Blood pressure  Arterial stiffening
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号